METHODS: Sequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating.
RESULTS: Outbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0-2 SNPs) with the common ancestor dated around 2017.
CONCLUSION: The total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination.
METHODS: We assessed patients from the REMoxTB trial-a randomised controlled trial of tuberculosis treatment that enrolled previously untreated participants with Mycobacterium tuberculosis infection from Malaysia, South Africa, and Thailand. We did whole-genome sequencing and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) typing of pairs of isolates taken by sputum sampling: one from before treatment and another from either the end of failed treatment at 17 weeks or later or from a recurrent infection. We compared the number and location of SNPs between isolates collected at baseline and recurrence.
FINDINGS: We assessed 47 pairs of isolates. Whole-genome sequencing identified 33 cases with little genetic distance (0-6 SNPs) between strains, deemed relapses, and three cases for which the genetic distance ranged from 1306 to 1419 SNPs, deemed re-infections. Six cases of relapse and six cases of mixed infection were classified differently by whole-genome sequencing and MIRU-VNTR. We detected five single positive isolates (positive culture followed by at least two negative cultures) without clinical evidence of disease.
INTERPRETATION: Whole-genome sequencing enables the differentiation of relapse and re-infection cases with greater resolution than do genotyping methods used at present, such as MIRU-VNTR, and provides insights into the biology of recurrence. The additional clarity provided by whole-genome sequencing might have a role in defining endpoints for clinical trials.
FUNDING: Wellcome Trust, European Union, Medical Research Council, Global Alliance for TB Drug Development, European and Developing Country Clinical Trials Partnership.