Displaying all 3 publications

Abstract:
Sort:
  1. Dumbre DK, Mozammel T, Selvakannan P, Hamid SB, Choudhary VR, Bhargava SK
    J Colloid Interface Sci, 2015 Mar 1;441:52-8.
    PMID: 25490562 DOI: 10.1016/j.jcis.2014.11.018
    Thermal decomposition of co-precipitated Ni-Fe-HT materials led to the formation a mesoporous Ni-Fe-HT catalyst and we have demonstrated here its active role as solid and active catalyst for the Knoevenagel condensation reaction of various aldehydes with active methylene compounds (R-CH2-CN, where R=CN or CO2Et). High product yields are obtained at moderate temperature under solvent-free conditions and the catalyst can be easily separated from the reaction mixture, simply by filtration and reused several times without a significant loss of its activity. Since these mesoporous metal oxides derived from the NiFe hydrotalcites, their basicity mediated abstraction of the acidic protons from the active methylene compounds was responsible for their catalytic activity under solvent-free conditions.
  2. Ali E, Sultana S, Hamid SBA, Hossain M, Yehya WA, Kader A, et al.
    Crit Rev Food Sci Nutr, 2018 Jun 13;58(9):1495-1511.
    PMID: 28033035 DOI: 10.1080/10408398.2016.1264361
    Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.
  3. Khalil I, Julkapli NM, Yehye WA, Basirun WJ, Bhargava SK
    Materials (Basel), 2016 May 24;9(6).
    PMID: 28773528 DOI: 10.3390/ma9060406
    Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links