Displaying all 5 publications

Abstract:
Sort:
  1. Bindal P, Gnanasegaran N, Bindal U, Haque N, Ramasamy TS, Chai WL, et al.
    Clin Oral Investig, 2019 Oct;23(10):3821-3831.
    PMID: 30687907 DOI: 10.1007/s00784-019-02811-5
    OBJECTIVE: In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells.

    MATERIALS AND METHODS: Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay.

    RESULTS: Viability of iDPSCs was significantly (p 

  2. Mitra NK, Bindal U, Eng Hwa W, Chua CL, Tan CY
    Int J Clin Exp Pathol, 2015;8(10):12041-52.
    PMID: 26722389
    Out of the minor myelin proteins, most significant one is myelin oligodendrocyte glycoprotein (MOG). Mesenchymal stem cells (MSCs) have proven immunoregulatory capacity. The objective of this study was to investigate the effects of syngeneic MSCs on mouse model of experimental autoimmune encephalomyelitis (EAE) through observation of locomotion by footprint analysis, histological analysis of spinal cord and estimation IL-17. C57BL/6 mice (10 weeks, n = 16) were immunized with 300 µg of MOG35-55 and 200 µL of complete Freund's adjuvant (CFA) to produce EAE model. Sham-treated control (n = 8) were injected with CFA. Half of immunized mice were given 100 µL of PBS (n = 8) and next half (n = 8) received 1 × 10(5) MSCs on day 11 through the tail veins. Clinical scoring showed development of EAE (loss of tonicity of tail and weakness of hind limb) on day 10. Following MSC treatment, clinical scores and hindlimb stride length showed significant improvement on day 15 onwards, compared to day 10 (P < 0.05). Under LFB staining, while PBS-treated group of EAE mice showed pale and degenerated axons in anterolateral white column of lumbar spinal cord, MSC-treated group showed numerous normal-looking axons. H&E staining showed normal axons in anterolateral white column and reduction of macrophages in MSC-treated EAE mice group. A lower level of IL-17 was observed in MSC treated EAE mice, compared to PBS-treated EAE mice. Our results suggest that Intravenous MSC has the potential to improve the locomotion and regeneration of axons in spinal cord in MOG-induced EAE model.
  3. Abdul Manap AS, Vijayabalan S, Madhavan P, Chia YY, Arya A, Wong EH, et al.
    Drug Target Insights, 2019;13:1177392819866412.
    PMID: 31391778 DOI: 10.1177/1177392819866412
    Alzheimer disease is a neurodegenerative disease that is signified by cognitive decline, memory loss, and erratic behavior. Till date, no cure for Alzheimer exists and the current Alzheimer medications have limited effectiveness. However, herbal medicines may slow down the disease's progression, which may hopefully reduce the number of cases in the years to come. Numerous studies have been done on characterizing the neuroprotective properties from plants belonging to Scrophulariaceae family, particularly Bacopa monnieri and its polyphenolic compounds known as bacosides. This review presents the findings on bacosides in therapeutic plants and their impact on Alzheimer disease pathology. These reports present data on the clinical, cellular activities, phytochemistry, and biological applications that may be used in new drug treatment for Alzheimer disease.
  4. Bindal P, Bindal U, Lin CW, Kasim NHA, Ramasamy TSAP, Dabbagh A, et al.
    Technol Health Care, 2017 Dec 04;25(6):1041-1051.
    PMID: 28800347 DOI: 10.3233/THC-170922
    Dental stem cells isolated for human dental pulp are an excellent source for regenerative medicine and dentistry. Simulation of clinical scenario is one of the crucial challenges for evaluation of the efficacy of DPSCs in various regenerative therapies. In this study we evaluated the viability of DPSCs after treatment with artificial bacterial lipopolysaccharides (LPS) as the main component responsible for inducing inflammatory response in majority of the inflammatory conditions in clinical scenario. Although a number of studies have previously treated stem cells with LPS from bacteria, however the accuracy level of the outcome was not established. Here we have analyzed the outcome using adaptive neuro-fuzzy inferences system (ANFIS) to predict the viability of human DPSCs after treatment with bacterial LPS.
  5. Abdul Manap AS, Wei Tan AC, Leong WH, Yin Chia AY, Vijayabalan S, Arya A, et al.
    Front Aging Neurosci, 2019;11:206.
    PMID: 31507403 DOI: 10.3389/fnagi.2019.00206
    Hallmarks of Alzheimer's disease (AD) pathology include acetylcholine (ACh) deficiency and plaque deposition. Emerging studies suggest that acetylcholinesterase (AChE) may interact with amyloid β (Aβ) to promote aggregation of insoluble Aβ plaques in brains of patients. Current therapeutic options available for AD patients, such as AChE inhibitors, provide only symptomatic relief. In this study, we screened four natural compounds believed to harbor cognitive benefits-curcumin, piperine, bacoside A, and chebulinic acid. In the first section, preliminary screening through computational molecular docking simulations gauged the suitability of the compounds as novel AChE inhibitors. From here, only compounds that met the in silico selection criteria were selected for the second section through in vitro investigations, including AChE enzyme inhibition assay, 3-(4,5-dimenthylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTT) assay, Thioflavin T (ThT) assay, and biochemical analysis via a neuronal cell line model. Of the four compounds screened, only curcumin (-9.6 kcal/mol) and piperine (-10.5 kcal/mol) showed favorable binding affinities and interactions towards AChE and were hence selected. In vitro AChE inhibition demonstrated that combination of curcumin and piperine showed greater AChE inhibition with an IC50 of 62.81 ± 0.01 μg/ml as compared to individual compounds, i.e., IC50 of curcumin at 134.5 ± 0.06 μg/ml and IC50 of piperine at 76.6 ± 0.08 μg/ml. In the SH-SY5Y cell model, this combination preserved cell viability up to 85%, indicating that the compounds protect against Aβ-induced neuronal damage (p < 0.01). Interestingly, our results also showed that curcumin and piperine achieved a synergistic effect at 35 μM with an synergism quotient (SQ) value of 1.824. Synergistic behavior indicates that the combination of these two compounds at lower concentrations may provide a better outcome than singularly used for Aβ proteins. Combined curcumin and piperine managed to inhibit aggregation (reduced ThT intensity at 0.432 a.u.; p < 0.01) as well as disaggregation (reduced ThT intensity at 0.532 a.u.; p < 0.01) of fibrillar Aβ42. Furthermore, combined curcumin and piperine reversed the Aβ-induced up-regulation of neuronal oxidative stress (p < 0.01). In conclusion, curcumin and piperine demonstrated promising neuroprotective effects, whereas bacoside A and chebulinic acid may not be suitable lead compounds. These results are hoped to advance the field of natural products research as potentially therapeutic and curative AD agents.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links