METHODS: In this cross sectional study, body composition data (weight, height, body fat percentage [% fat], fat mass, fat free mass, visceral fat, waist circumference [WC] and body mass index-for-age [BMI z-score]) and bone health data (Z-score and broadband ultrasound attenuation [BUA]) were collected from 415 schoolchildren aged 9-12 years, cluster sampled from randomly selected primary schools in Kuala Lumpur, Malaysia.
RESULTS: Girls generally had significantly higher height, body fat percentage, fat mass, visceral fat and Z-score as compared to boys. A steady increase of the mean BUA value was observed with increasing age in both sexes. The mean BUA value of the present study across the population was significantly higher than that of schoolchildren from Nigeria (p < 0.001), Colombia (p < 0.001) and Spain (p = 0.002). Significant positive correlations were found between all the body composition variables and bone outcome variables across the population. Further, BUA was significantly correlated with weight (β = 0.172; p = 0.001), height (β = 0.299; p < 0.001), % fat (β = 0.131; p = 0.007), fat mass (β = 0.130; p = 0.007), fat free mass (β = 0.209; p < 0.001), visceral fat (β = 0.127, p = 0.008), WC (β = 0.165; p = 0.001) and BMI z-score (β = 0.162; p = 0.001), after controlling for sex, age and ethnicity. Similarly, after confounders adjusted, Z-score was significantly predicted by weight (β = 0.160; p = 0.001), height (β = 0.310; p < 0.001), % fat (β = 0.104; p = 0.032), fat mass (β = 0.107; p = 0.026), fat free mass (β = 0.218; p < 0.001), visceral fat (β = 0.107, p = 0.026), WC (β = 0.145; p = 0.002) and BMI z-score (β = 0.150; p = 0.002).
CONCLUSIONS: Our findings have revealed that body composition variables were positive correlated with bone outcome variables, suggesting that adipose tissue acts to stimulate bone growth. Further clinical and molecular studies in the future is recommended to fully illustrate the complex interactions between adiposity and bone health.
METHODS: Using data from the 2019 Global Burden of Disease study involving 204 countries and territories, trends in DALYs and deaths were described for obesity and malnutrition from 2000 to 2019, stratified by geographical regions (as defined by WHO) and Socio-Demographic Index (SDI). Malnutrition was defined according to the 10th revision of International Classification of Diseases codes for nutritional deficiencies, stratified by malnutrition type. Obesity was measured via body mass index (BMI) using metrics related to national and subnational estimates, defined as BMI ≥25 kg/m2. Countries were stratified into low, low-middle, middle, high-middle, and high SDI bands. Regression models were constructed to predict DALYs and mortality up to 2030. Association between age-standardised prevalence of the diseases and mortality was also assessed.
FINDINGS: In 2019, age-standardised malnutrition-related DALYs was 680 (95% UI: 507-895) per 100,000 population. DALY rates decreased from 2000 to 2019 (-2.86% annually), projected to fall 8.4% from 2020 to 2030. Africa and low SDI countries observed highest malnutrition-related DALYs. Age-standardised obesity-related DALY estimates were 1933 (95% UI: 1277-2640). Obesity-related DALYs rose 0.48% annually from 2000 to 2019, predicted to increase by 39.8% from 2020 to 2030. Highest obesity-related DALYs were in Eastern Mediterranean and middle SDI countries.
INTERPRETATION: The ever-increasing obesity burden, on the backdrop of curbing the malnutrition burden, is predicted to rise further.
FUNDING: None.
METHODS: Search was conducted on Medline and Embase for meta-analysis investigating associated complications and causes of mortality in NAFLD patients. Summary estimates were presented with original units, sample size, and I2 for heterogeneity. The Assessment of Multiple Systematic Reviews 2 was employed for article selection.
RESULTS: 25 meta-analyses were included in the present review. NAFLD increased the risks of systemic complications, including cardiovascular diseases, systemic malignancies, diabetes, and chronic kidney disease. Regarding hepatic outcomes, the incidence of hepatocellular carcinoma in NAFLD was 2.39 per 100 person years (CI: 1.40 to 4.08). Individuals with NAFLD were also found to have an increased likelihood of cholangiocarcinoma (OR: 1.88, CI: 1.25 to 2.83) and gallstone disease (OR: 1.55, CI: 1.31 to 1.82) compared to individuals without NAFLD. NAFLD was associated with a higher risk of fatal and non-fatal CVD events (HR: 1.45, CI: 1.31 to 1.61) compared to individuals without NAFLD. Coronary heart disease and subclinical and clinical coronary heart disease were also significantly elevated in NAFLD individuals compared to individuals without NAFLD. Additionally, NAFLD was associated with an increased risk of all-cause mortality (HR: 1.34, CI: 1.17 to 1.54) and cardiovascular (HR: 1.30, CI: 1.08 to 1.56) but not cancer-related mortality.
CONCLUSION: The study summarizes high-level evidence from published meta-analyses to provide a much-needed update on the outcomes in patients with NAFLD. The significant systemic burden associated with NAFLD and impending fatty liver epidemic requires prompt action from multidisciplinary providers, policy providers, and stakeholders to reduce the burden of NAFLD.
METHODS AND RESULTS: Medline and Embase were searched from inception till 7 August 2022 for systematic reviews and meta-analyses studying the effects of sex on cardiovascular outcomes in T2DM patients. Results from reviews were synthesized with a narrative synthesis, with a tabular presentation of findings and forest plots for reviews that performed a meta-analysis. 27 review articles evaluating sex differences in cardiovascular outcomes were included. Females with T2DM had a higher risk of developing coronary heart disease (CHD; RRR: 1.52, 95%CI: 1.32-1.76, P < 0.001), acute coronary syndrome (ACS; RRR: 1.38, 95%CI: 1.25-1.52, P < 0.001), heart failure (RRR: 1.09, 95%CI: 1.05-1.13, P < 0.001) than males. Females had a higher risk of all-cause mortality (RRR: 1.13, 95%CI: 1.07-1.19, P < 0.001), cardiac mortality (RRR: 1.49, 95%CI: 1.11-2.00, P = 0.009) and CHD mortality (RRR: 1.44, 95%CI: 1.20-1.73, P < 0.001) as compared to males.
CONCLUSIONS: This umbrella review demonstrates that females with T2DM have a higher risk of cardiovascular outcomes than their male counterparts. Future research should address the basis of this heterogeneity and epidemiological factors for better quality of evidence, and identify actionable interventions that will narrow these sex disparities.
METHODS: The analysis consisted of adults in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018 with data on socio-demographic characteristics and comorbidities. NAFLD was diagnosed with fatty liver index (FLI) and United States-FLI at a cut-off of 60 and 30, respectively in the substantial absence of alcohol use. A multivariate regression analysis was conducted to adjust for confounders.
RESULTS: A total of 45,302 adults were included, and 27.83% were identified to have NAFLD. Overall, 45.65 and 35.12% of patients with NAFLD had HTN and uncontrolled HTN, respectively. A multivariate analysis with confounders demonstrated that hypertensive NAFLD had a significantly increased risk of all-cause mortality (HR: 1.39, CI: 1.14-1.68, p < 0.01) and cardiovascular disease (CVD) mortality (HR: 1.85, CI: 1.06-3.21, p = 0.03). Untreated HTN remained to have a significantly increased risk in all-cause (HR: 1.59, CI: 1.28-1.96, p < 0.01) and CVD mortality (HR: 2.36, CI: 1.36-4.10, p < 0.01) while treated HTN had a non-significant increased risk of CVD mortality (HR: 1.51, CI: 0.87-2.63, p = 0.14) and a lower magnitude of increase in the risk of all-cause mortality (HR: 1.26, CI: 1.03-1.55, p = 0.03).
CONCLUSION: Despite the significant burden of HTN in NAFLD, up to a fifth of patients have adequate control, and the lack thereof significantly increases the mortality risk. With the significant association of HTN in NAFLD, patients with NAFLD should be managed with a multidisciplinary team to improve longitudinal outcomes.