Displaying all 9 publications

Abstract:
Sort:
  1. Wang Y, Cao M, Hu T, Zhou X
    Plant Dis, 2024 Feb 06.
    PMID: 38319620 DOI: 10.1094/PDIS-12-23-2674-PDN
    Hibiscus latent Singapore virus (HLSV) and Hibiscus latent Fort Pierce virus (HLFPV) both belong to the genus Tobamovirus in the family Virgaviridae. The genomes of both HLSV and HLFPV consist of a linear positive sense single-stranded RNA of about 6.3 kb. HLSV is the causal agent of hibiscus leaf crinkle disease. Infections of HLSV in hibiscus (Hibiscus rosa-sinensis) have so far only been reported in Singapore, Japan and Malaysia (Srinivasan et al., 2002; Yoshida et al., 2018; Yusop et al., 2021). In 2017, leaf curling and chlorosis symptoms of lantana (Lantana camara) plants were found in Chenshan Botanical Garden, Shanghai, China. To detect potential virus(es) in these lantana samples, leaves from one lantana plant were collected and total RNA was extracted with RNAiso Plus (TaKaRa). A cDNA library was prepared by TruSeq RNA Sample Prep Kit (Illumina) after removing ribosomal RNA by Ribo-ZeroTM rRNA Removal Kit (Epicentre). The paired-end sequencing was then performed on an Illumina NovaSeq 6000. A total of 61,085,018 high quality reads were obtained and de novo assembly by StringTie revealed 124,516 contigs (greater than 50 bp, N50=719 bp) with an average length of 537 bp. BLASTx analyses in the National Center for Biotechnology Information (NCBI) database showed that 1 long contig of 6,305 bp, assembled of 1794 clean reads, shared significant nucleotide similarities with the genomic sequence of HLSV, and 1 contig of 6,271 bp, assembled of 3174 clean reads, shared significant similarities with the genomic sequence of HLFPV, yielding an average coverage of the whole genome at 42.65 and 75.83 per million reads, respectively. To obtain the complete genome of the viral RNA in this lantana sample, eleven overlapping regions covering the entire HLSV viral genome, and nine overlapping regions covering the entire HLFPV viral genome were amplified by reverse transcription-PCR (RT-PCR) and sequenced. In addition, the exact 5' and 3' ends of the genomic RNA of each virus were determined by rapid amplification of the cDNA ends (RACE) (Wang et al. 2020). The complete genome of the identified HLSV, deposited in GenBank: MZ020960, is 6,486 nt in length and shows 98.4% nucleotide sequence identity with HLSV Singapore isolate (GenBank: AF395898). Similar to other HLSV isolates, this virus isolate possesses an internal poly(A) tract of 87 nucleotides, which is crucial to virus replication (Niu et al., 2015). The complete genome of the Lantana HLFPV isolate is 6,463 nt (GenBank MZ020961) including a 73 nt internal poly(A) tract, and has 98.4% nt identity to HLFPV-Japan (AB917427). In two other lantana plants from the same site, the presence of HLSV and HLFPV was confirmed by RT-PCR using the primer pairs (5'-GCATCTGCATAACACGGTTG-3'/5'-ACGTTGTAGTAGACGTTGTTGTAG-3' and 5'-GGACCTTGCTAATCCGCTAAAGTTG-3'/5'-GGTCCATGTCCATCCAGATGCAATC-3'). In addition to the HLSV and HLFPV genomes, BLASTx analysis of three contigs of 3,006 bp, 2,845 bp and 2,200 bp, assembled of 1328, 352 and 2280 clean reads respectively, showed high identity to RNAs 1 (MG182148), 2 (DQ412731) and 3 (KY794710) of cucumber mosaic virus. To the best of our knowledge, this is the first report of L. camara as a new natural host of HLSV and HLFPV, and first identification of a mixed infection of HLSV and HLFPV.
  2. Cao M, Liu Y, Yuan H, Qiu Y, Xie Q, Yi P, et al.
    J AOAC Int, 2020 Sep 01;103(5):1400-1405.
    PMID: 33241395 DOI: 10.1093/jaoacint/qsaa048
    BACKGROUND: Chewable areca products are popular in Asian countries, including India, Pakistan, Malaysia, and China. The major alkaloids present in areca products are guvacine, arecaidine, guvacoline, and arecoline which cause carcinogenicity and addiction.

    OBJECTIVE: The objective of this study was the quantitative analysis of the alkaloid content of areca chewable products from different countries and regions using HPLC-UV, as well as the benefit of their safety evaluation products.

    METHOD: An HPLC-UV method was established for qualitative and quantitative analyses of 65 batches of areca chewable products from different countries and regions. Additionally, similarity evaluation of chromatographic fingerprints was applied for data analysis.

    RESULTS: These results reveal a significant variation in the levels of areca alkaloids among tested products, specifically guvacoline (0.060-1.216 mg/g), arecoline (0.376-3.592 mg/g), guvacine (0.028-1.184 mg/g), and arecaidine (0.184-1.291 mg/g). There were significant differences in the alkaloid content of areca chewable products from different producing areas.

    CONCLUSIONS: The method will be useful in the safety evaluation of different areca chewable products.

    HIGHLIGHTS: The established HPLC-UV method can be adopted for safety evaluation of areca chewable products from different countries and regions due to its general applicability.

  3. Wei Q, Xie K, Wang H, Shao X, Wei Y, Chen Y, et al.
    Plants (Basel), 2023 Jan 04;12(2).
    PMID: 36678938 DOI: 10.3390/plants12020224
    The effect of fructose on γ-aminobutyric acid (GABA) content and its metabolic pathway in broccoli sprouts was investigated. The results demonstrated that the fructose treatment not only significantly increased the fresh weight, GABA, and glutamate contents in sprouts, but also promoted the activity of glutamic acid decarboxylase (GAD) and the expressions of BoGAD1 and BoGAD2. Meanwhile, fructose treatment inhibited the stem length of broccoli sprouts and enhanced the abscisic acid (ABA) production in comparison with the control. Ca2+, CaM contents, and BoCaM2 expression in broccoli sprouts were also stimulated after fructose treatment. Exogenous fructose increased inositol trisphosphate (IP3) content and activated the activity of phosphatidylinositol-specific phospholipase C (PI-PLC) and the expression of BoPLC2, contributing to Ca2+ influx into the cells. These results suggested that Ca2+ played an essential role in GABA enrichment under fructose treatment, which may be associated with GAD and PI-PLC.
  4. Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, et al.
    Trends Ecol Evol, 2017 06;32(6):438-451.
    PMID: 28359572 DOI: 10.1016/j.tree.2017.02.020
    Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO2, water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world.
  5. Sreekar R, Katabuchi M, Nakamura A, Corlett RT, Slik JWF, Fletcher C, et al.
    R Soc Open Sci, 2018 Sep;5(9):181168.
    PMID: 30839691 DOI: 10.1098/rsos.181168
    The relationship between β-diversity and latitude still remains to be a core question in ecology because of the lack of consensus between studies. One hypothesis for the lack of consensus between studies is that spatial scale changes the relationship between latitude and β-diversity. Here, we test this hypothesis using tree data from 15 large-scale forest plots (greater than or equal to 15 ha, diameter at breast height ≥ 1 cm) across a latitudinal gradient (3-30o) in the Asia-Pacific region. We found that the observed β-diversity decreased with increasing latitude when sampling local tree communities at small spatial scale (grain size ≤0.1 ha), but the observed β-diversity did not change with latitude when sampling at large spatial scales (greater than or equal to 0.25 ha). Differences in latitudinal β-diversity gradients across spatial scales were caused by pooled species richness (γ-diversity), which influenced observed β-diversity values at small spatial scales, but not at large spatial scales. Therefore, spatial scale changes the relationship between β-diversity, γ-diversity and latitude, and improving sample representativeness avoids the γ-dependence of β-diversity.
  6. Asteris PG, Gandomi AH, Armaghani DJ, Tsoukalas MZ, Gavriilaki E, Gerber G, et al.
    J Cell Mol Med, 2024 Feb;28(4):e18105.
    PMID: 38339761 DOI: 10.1111/jcmm.18105
    Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.
  7. Needham JF, Johnson DJ, Anderson-Teixeira KJ, Bourg N, Bunyavejchewin S, Butt N, et al.
    Glob Chang Biol, 2022 Jan 25.
    PMID: 35080088 DOI: 10.1111/gcb.16100
    The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1,961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass, and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either aboveground biomass or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct demographic compositions of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the demographic composition of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure and function.
  8. Chu C, Lutz JA, Král K, Vrška T, Yin X, Myers JA, et al.
    Ecol Lett, 2019 Feb;22(2):245-255.
    PMID: 30548766 DOI: 10.1111/ele.13175
    Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.
  9. Zhong Y, Chu C, Myers JA, Gilbert GS, Lutz JA, Stillhard J, et al.
    Nat Commun, 2021 May 25;12(1):3137.
    PMID: 34035260 DOI: 10.1038/s41467-021-23236-3
    Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links