Displaying all 4 publications

Abstract:
Sort:
  1. Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, et al.
    Molecules, 2023 Jul 06;28(13).
    PMID: 37446908 DOI: 10.3390/molecules28135246
    Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
  2. Handayani D, Aminah I, Pontana Putra P, Eka Putra A, Arbain D, Satriawan H, et al.
    Saudi Pharm J, 2023 Sep;31(9):101744.
    PMID: 37649676 DOI: 10.1016/j.jsps.2023.101744
    Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging nosocomial pathogen among hospitalized patients, with high morbidity and mortality rates. The discovery of a novel antibacterial is urgently needed to address this resistance problem. The present study aims to explore the antibacterial potential of three depsidone compounds: 2-clorounguinol (1), unguinol (2), and nidulin (3), isolated from the marine sponge-derived fungus Aspergillus unguis IB1, both in vitro and in silico. The antibacterial activity of all compounds was evaluated by calculating the Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) against MRSA using agar diffusion and total plate count methods, respectively. Bacterial cell morphology changes were  studied for the first time using scanning electron microscopy (SEM). Molecular docking, pharmacokinetics analysis, and molecular dynamics simulation were performed to determine possible protein-ligand interactions and the stability of the targeting penicillin-binding protein 2a (PBP2a) against 2-clorounguinol (1). The research findings indicated that compounds 1 to 3 exhibited MIC and MBC values of 2 µg/mL and 16 µg/mL against MRSA, respectively. MRSA cells displayed a distinct shape after the addition of the depsidone compound, as observed in SEM. According to the in silico study, 2-chlorounguinol exhibited the highest binding-free energy (BFE) with PBP2a (-6.7 kcal/mol). For comparison, (E)-3-(2-(4-cyanostyryl)-4-oxoquinazolin-3(4H)-yl) benzoic acid inhibits PBP2a with a BFE less than -6.6 kcal/mol. Based on the Lipinski's rule of 5, depsidone compounds constitute a class of compounds with good pharmacokinetic properties, being easily absorbed and permeable. These findings suggest that 2-chlorounguinol possesses potential antibacterial activity and could be developed as an antibiotic adjuvant to reduce antimicrobial resistance.
  3. Sajjan VP, Anigol LB, Gurubasavaraj PM, Patil D, Patil PS, Gummagol NB, et al.
    J Biomol Struct Dyn, 2023;41(21):11681-11699.
    PMID: 36602778 DOI: 10.1080/07391102.2022.2163424
    A series of novel hydrazone compounds have been synthesized by the condensation of hydrazines and different substituted salicylaldehydes at a molar ratio of 1:1 in one step reaction and characterized by FT-IR, ESI-MS, 1H NMR, and single crystal x-ray diffraction. The crystal structure of the compound shows a trans configuration around the C = N bond and triclinic system with P -1/-p 1. Synthesized compounds were screened for cytotoxicity activities against A375 (melanoma), HT-29 (Colon), and A549 (lung) cancer cell lines. Among them, compound 2 exhibited the highest cytotoxic effect against the A375 cell line (IC50 = 0.30 µM) and HT-29 cell line (1.68 µM), compared to those of apatinib as a reference standard drug (0.28, 1.49 µM, respectively). The cytocompatibility assay on the L929 normal cell line and the hemolysis assay on human RBC were used to validate the non-toxic action. From DFT calculation, the various parameters such as HOMO-LUMO energies, Hirshfeld, and MEP have been studied. Furthermore, in silico molecular docking with three receptors was studied. Among four compounds, compound 2 has the lowest binding energy against cyclin dependent kinase (ΔGb = -9.3 kcal/mol). In addition to this, molecular dynamics (MD) simulation was also performed. Based on this study, these novel hydrazones can be considered a promising anticancer agent due to their potent cytotoxicity activities and computational analysis.Communicated by Ramaswamy H. Sarma.
  4. Bender O, Shoman ME, Ali TFS, Dogan R, Celik I, Mollica A, et al.
    Arch Pharm (Weinheim), 2023 Feb;356(2):e2200407.
    PMID: 36403191 DOI: 10.1002/ardp.202200407
    FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) patients. In the current study, the oxindole chemotype is employed as a structural motif for the design of new FLT3 inhibitors as potential hits for AML irradiation. Cell-based screening was performed with 18 oxindole derivatives and 5a-c inhibited 68%-73% and 83%-91% of internal tandem duplication (ITD)-mutated MV4-11 cell growth for 48- and 72-h treatments while only 0%-2% and 27%-39% in wild-type THP-1 cells. The most potent compound 5a inhibited MV4-11 cells with IC50 of 4.3 µM at 72 h while it was 8.7 µM in THP-1 cells, thus showing two-fold selective inhibition against the oncogenic ITD mutation. The ability of 5a to modulate cell death was examined. High-throughput protein profiling revealed low levels of the growth factors IGFBP-2 and -4 with the blockage of various apoptotic inhibitors such as Survivin. p21 with cellular stress mechanisms was characterized by increased expression of HSP proteins along with TNF-β. Mechanistically, compounds 5a and 5b inhibited FLT3 kinase with IC50 values of 2.49 and 1.45 µM, respectively. Theoretical docking studies supported the compounds' ability to bind to the FLT3 ATP binding site with the formation of highly stable complexes as evidenced by molecular dynamics simulations. The designed compounds also provide suitable drug candidates with no violation of drug likeability rules.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links