Displaying all 4 publications

Abstract:
Sort:
  1. Mitropoulos K, Al Jaibeji H, Forero DA, Laissue P, Wonkam A, Lopez-Correa C, et al.
    Hum Genomics, 2015 Jun 18;9:11.
    PMID: 26081768 DOI: 10.1186/s40246-015-0033-3
    In recent years, the translation of genomic discoveries into mainstream medical practice and public health has gained momentum, facilitated by the advent of new technologies. However, there are often major discrepancies in the pace of implementation of genomic medicine between developed and developing/resource-limited countries. The main reason does not only lie in the limitation of resources but also in the slow pace of adoption of the new findings and the poor understanding of the potential that this new discipline offers to rationalize medical diagnosis and treatment. Here, we present and critically discuss examples from the successful implementation of genomic medicine in resource-limited countries, focusing on pharmacogenomics, genome informatics, and public health genomics, emphasizing in the latter case genomic education, stakeholder analysis, and economics in pharmacogenomics. These examples can be considered as model cases and be readily replicated for the wide implementation of pharmacogenomics and genomic medicine in other resource-limited environments.
  2. Chumnumwat S, Lu ZH, Sukasem C, Winther MD, Capule FR, Abdul Hamid AAAT, et al.
    Public Health Genomics, 2019;22(3-4):132-139.
    PMID: 31587001 DOI: 10.1159/000502916
    Pharmacogenomics (PGx) is increasingly being recognized as a potential tool for improving the efficacy and safety of drug therapy. Therefore, several efforts have been undertaken globally to facilitate the implementation process of PGx into routine clinical practice. Part of these efforts include the formation of PGx working groups working on PGx research, synthesis, and dissemination of PGx data and creation of PGx implementation strategies. In Asia, the Southeast Asian Pharmacogenomics Research Network (SEAPharm) is established to enable and strengthen PGx research among the various PGx communities within but not limited to countries in SEA; with the ultimate goal to support PGx implementation in the region. From the perspective of SEAPharm member countries, there are several key elements essential for PGx implementation at the national level. They include pharmacovigilance database, PGx research, health economics research, dedicated laboratory to support PGx testing for both research and clinical use, structured PGx education, and supportive national health policy. The status of these essential elements is presented here to provide a broad picture of the readiness for PGx implementation among the SEAPharm member countries, and to strengthen the PGx research network and practice in this region.
  3. Wang CW, Tassaneeyakul W, Chen CB, Chen WT, Teng YC, Huang CY, et al.
    J Allergy Clin Immunol, 2021 04;147(4):1402-1412.
    PMID: 32791162 DOI: 10.1016/j.jaci.2020.08.003
    BACKGROUND: Co-trimoxazole, a sulfonamide antibiotic, is used to treat a variety of infections worldwide, and it remains a common first-line medicine for prophylaxis against Pneumocystis jiroveci pneumonia. However, it can cause severe cutaneous adverse reaction (SCAR), including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms. The pathomechanism of co-trimoxazole-induced SCAR remains unclear.

    OBJECTIVE: We aimed to investigate the genetic predisposition of co-trimoxazole-induced SCAR.

    METHODS: We conducted a multicountry case-control association study that included 151 patients with of co-trimoxazole-induced SCAR and 4631 population controls from Taiwan, Thailand, and Malaysia, as well as 138 tolerant controls from Taiwan. Whole-genome sequencing was performed for the patients and population controls from Taiwan; it further validated the results from Thailand and Malaysia.

    RESULTS: The whole-genome sequencing study (43 case patients vs 507 controls) discovered that the single-nucleotide polymorphism rs41554616, which is located between the HLA-B and MICA loci, had the strongest association with co-trimoxazole-induced SCAR (P = 8.2 × 10-9; odds ratio [OR] = 7.7). There were weak associations of variants in co-trimoxazole-related metabolizing enzymes (CYP2D6, GSTP1, GCLC, N-acetyltransferase [NAT2], and CYP2C8). A replication study using HLA genotyping revealed that HLA-B∗13:01 was strongly associated with co-trimoxazole-induced SCAR (the combined sample comprised 91 case patients vs 2545 controls [P = 7.2 × 10-21; OR = 8.7]). A strong HLA association was also observed in the case patients from Thailand (P = 3.2 × 10-5; OR = 3.6) and Malaysia (P = .002; OR = 12.8), respectively. A meta-analysis and phenotype stratification study further indicated a strong association between HLA-B∗13:01 and co-trimoxazole-induced drug reaction with eosinophilia and systemic symptoms (P = 4.2 × 10-23; OR = 40.1).

    CONCLUSION: This study identified HLA-B∗13:01 as an important genetic factor associated with co-trimoxazole-induced SCAR in Asians.

  4. Runcharoen C, Fukunaga K, Sensorn I, Iemwimangsa N, Klumsathian S, Tong H, et al.
    Hum Genome Var, 2021 Feb 04;8(1):7.
    PMID: 33542200 DOI: 10.1038/s41439-021-00135-z
    Pharmacogenomics can enhance the outcome of treatment by adopting pharmacogenomic testing to maximize drug efficacy and lower the risk of serious adverse events. Next-generation sequencing (NGS) is a cost-effective technology for genotyping several pharmacogenomic loci at once, thereby increasing publicly available data. A panel of 100 pharmacogenes among Southeast Asian (SEA) populations was resequenced using the NGS platform under the collaboration of the Southeast Asian Pharmacogenomics Research Network (SEAPharm). Here, we present the frequencies of pharmacogenomic variants and the comparison of these pharmacogenomic variants among different SEA populations and other populations used as controls. We investigated the different types of pharmacogenomic variants, especially those that may have a functional impact. Our results provide substantial genetic variations at 100 pharmacogenomic loci among SEA populations that may contribute to interpopulation variability in drug response phenotypes. Correspondingly, this study provides basic information for further pharmacogenomic investigations in SEA populations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links