Oral microbial ecosystems are vital in maintaining the health of the oral cavity and the entire body. Oral microbiota is associated with the progression of oral diseases such as dental caries, periodontal diseases, head and neck cancer, and several systemic diseases such as cardiovascular disease, rheumatoid arthritis, adverse pregnancy outcomes, diabetes, lung infection, colorectal cancer, and pancreatic cancer. Buccal mucosa, tongue dorsum, hard palate, saliva, palatine tonsils, throat, keratinized gingiva, supra-gingival plaque, subgingival plaque, dentures, and lips are microbial habitats of the oral cavity. Porphyromonas gingivalis may have a role in the development of periodontal diseases, oral cancer, diabetes, and atherosclerotic disease. Fusobacterium nucleatum showed a higher abundance in periodontal diseases, oral and colon cancer, adverse pregnancy outcomes, diabetes, and rheumatoid arthritis. The higher abundance of Prevotella intermedia is typical in periodontal diseases, rheumatoid arthritis, and adverse pregnancy outcome. S. salivarius displayed higher abundance in both dental caries and OSCC. Oral bacteria may influence systemic diseases through inflammation by releasing pro inflammatory cytokines. Identification of oral bacteria using culture-dependent approaches and next-generation sequencing-based metagenomic approaches is believed to significantly identify the therapeutic targets and non-invasive diagnostic indicators in different human diseases. Oral bacteria in saliva could be exploited as a non-invasive diagnostic indicator for the early detection of oral and systemic disorders. Other therapeutic approaches such as the use of probiotics, green tea polyphenol, cold atmospheric plasma (CAP) therapy, antimicrobial photodynamic therapy, and antimicrobial peptides are used to inhibit the growth of biofilm formation by oral bacteria.
The dynamics of host-virus interactions, and impairment of the host's immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.
Mucosal-associated invariant T (MAIT) cells, defined as CD161++TCR iVα7.2+ T cells, play an important role in the innate defense against bacterial infections, and their functionality is impaired in chronic viral infections. Here, we investigated the frequency and functional role of MAIT cells in chronic hepatitis B virus (HBV) infection. The peripheral CD3+CD161++TCR iVα7.2+ MAIT cells in chronic HBV-infected patients and healthy controls were phenotypically characterized based on CD57, PD-1, TIM-3, and CTLA-4, as well as HLA-DR and CD38 expression. The frequency of MAIT cells was significantly decreased among chronic HBV-infected individuals as compared to controls. Expression of CD57, PD-1, CTLA-4, as well as HLA-DR and CD38 on MAIT cells was significantly elevated in chronic HBV-infected individuals relative to controls. The percentage of T cell receptor (TCR) iVα7.2+ CD161+ MAIT cells did not correlate with HBV viral load but inversely with HLA-DR on CD4+ T cells and MAIT cells and with CD57 on CD8+ T cells suggesting that decrease of MAIT cells may not be attributed to direct infection by HBV but driven by HBV-induced chronic immune activation. The percentage and expression levels of PD-1 as well as CTLA-4 on MAIT cells inversely correlated with plasma HBV-DNA levels, which may suggest either a role for MAIT cells in the control of HBV infection or the effect of HBV replication in the liver on MAIT cell phenotype. We report that decrease of TCR iVα7.2+ MAIT cells in the peripheral blood and their functions were seemingly impaired in chronic HBV-infected patients likely because of the increased expression of PD-1.