A mechanism regarding the redox reaction in lanthanum cerium oxide (LaxCeyOz) post-deposition annealed in reducing and oxidizing atmosphere was schematized and discussed in association with the presence of lanthanum as a substitutional cation. Analyses have been performed using X-ray diffraction, energy-filtered transmission electron microscopy, scanning transmission electron microscope-energy dispersive spectroscopy line scan, and capacitance-voltage measurements. The results showed the presence of an oxygen vacancy when La(3+) was in its substitution site, while annihilation of oxygen vacancy was accompanied by a displacement of La(3+) from the substitutional site to the interstitial site via a kick-out mechanism prior to its disappearance from the CeO2.
A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.
An ultrathin RF-magnetron sputtered Al2O3 gate on GaN subjected to postdeposition annealing at 800 °C in O2 ambient was systematically investigated. A cross-sectional energy-filtered transmission electron microscopy revealed formation of crystalline Al2O3 gate, which was supported by X-ray diffraction analysis. Various current conduction mechanisms contributing to leakage current of the investigated sample were discussed and correlated with metal-oxide-semiconductor characteristics of this sample.
The band alignment of ZrO2/interfacial layer/Si structure fabricated by simultaneous oxidation and nitridation of sputtered Zr on Si in N2O at 700°C for different durations has been established by using X-ray photoelectron spectroscopy. Valence band offset of ZrO2/Si was found to be 4.75 eV, while the highest corresponding conduction offset of ZrO2/interfacial layer was found to be 3.40 eV; owing to the combination of relatively larger bandgaps, it enhanced electrical breakdown field to 13.6 MV/cm at 10-6 A/cm2.
The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10-6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).
Extracted, formulated, and processed natural Aloe vera has been used as an active layer for memory applications. The functional memory device is realized by a bottom-up structure of ITO/Aloe vera/Al in which the Aloe vera is spin-coated after mixing with different concentrations of ethanol (0-80 wt%) and subsequently dried at different temperatures (50-120 °C). From the current density-voltage measurements, the device can exhibit a reproducible bipolar switching characteristic with pure Aloe vera dried at 50 °C. It is proposed that charges are transported across the Aloe vera layer via space-charge-limited conduction (SCLC), and clusters of interstitial space formed by the functional groups of acemannans and de-esterified pectins in the dried Aloe vera contribute to the memory effect. The formation of charge traps in the Aloe vera layer is dependent on the drying temperature. The drying temperature of a memory-switching Aloe vera layer can be extended to 120 °C with the addition of appropriate amounts of ethanol. The concept of using natural Aloe vera as an active material for memory applications has been demonstrated, and the read memory window, ON/OFF ratio, and retention time are approximately 5.0 V, 10(3), and >10(4) s, respectively.
Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics.
This study describes a novel fabrication technique to grow gold nanoparticles (AuNPs) directly on seeded ZnO sacrificial template/polymethylsilsesquioxanes (PMSSQ)/Si using low-temperature hydrothermal reaction at 80°C for 4 h. The effect of non-annealing and various annealing temperatures, 200°C, 300°C, and 400°C, of the ZnO-seeded template on AuNP size and distribution was systematically studied. Another PMMSQ layer was spin-coated on AuNPs to study the memory properties of organic insulator-embedded AuNPs. Well-distributed and controllable AuNP sizes were successfully grown directly on the substrate, as observed using a field emission scanning electron microscope followed by an elemental analysis study. A phase analysis study confirmed that the ZnO sacrificial template was eliminated during the hydrothermal reaction. The AuNP formation mechanism using this hydrothermal reaction approach was proposed. In this study, the AuNPs were charge-trapped sites and showed excellent memory effects when embedded in PMSSQ. Optimum memory properties of PMMSQ-embedded AuNPs were obtained for AuNPs synthesized on a seeded ZnO template annealed at 300°C, with 54 electrons trapped per AuNP and excellent current-voltage response between an erased and programmed device.
Photocatalytic degradation by the titanium dioxide (TiO2) photocatalyst attracts tremendous interest due to its promising strategy to eliminate pollutants from wastewater. The floating photocatalysts are explored as potential candidates for practical wastewater treatment applications that could overcome the drawbacks posed by the suspended TiO2 photocatalysis system. The problem occurs when the powdered TiO2 applied directly into the treated solution will form a slurry, making its reuse become a difficult step after treatment. In this study, the immobilization of titanium dioxide nanoparticles (TiO2 NPs) on the floating substrate (cork) employing polyvinyl alcohol (PVA) as a binder to anchor TiO2 NPs on the surface of the cork was carried out. Characterizations such as Fourier transformer infrared, X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), zeta potential, photoluminescence spectroscopy, femtosecond to millisecond time-resolved visible to mid-IR absorption spectroscopy, ion chromatography, and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) analyses were employed. XRD analysis revealed the formation of anatase-phase TiO2 NPs. The results demonstrated that the crystallite size was 9.36 nm. The band gap energy of TiO2 NPs was determined as 3.0 eV. PL analysis verified that TiO2 NPs possessed a slower recombination rate of electron-hole pairs as compared to anatase TiO2. The result was attributed by the behavior of photogenerated charge carriers on TiO2 NPs, which existed as shallowly trapped electrons that could survive longer than a few milliseconds in this study. Furthermore, SEM-EDX analysis indicated that TiO2 NPs were well distributed on the surface of the cork. At the optimal mole ratio of TiO2/PVA (1:8), the TiO2/PVA/cork floating photocatalyst degraded at 98.43% of methylene blue (MB) under a visible light source which performed better than under sunlight irradiation (77.09% of MB removal) for 120 min. Besides, the mineralization result has measured the presence of sulfate anions after photocatalytic activities, which achieved 86.13% (under a visible light source) and 65.34% (under sunlight). The superior photodegradation performance for MB was mainly controlled by the reactive oxygen species of the superoxide radical (•O2 -). The degradation kinetics of MB followed the first-order kinetics. Meanwhile, the Langmuir isotherm model was fitted for the adsorption isotherm. The floating photocatalyst presented good reusability, resulting in 78.13% of MB removal efficiency even after five cycles. Our TiO2/PVA/cork floating photocatalyst fabrication and high photocatalytic performance are potentially used in wastewater treatment, especially under visible light irradiation.
Over the past few decades, extensive research has been conducted to develop cost-effective and high-quality biochar for environmental biodegradation purposes. Pyrolysis has emerged as a promising method for recovering biochar from biomass and waste materials. This study provides an overview of the current state-of-the-art biochar production technology, including the advancements and biochar applications in organic pollutants remediation, particularly wastewater treatment. Substantial progress has been made in biochar production through advanced thermochemical technologies. Moreover, the review underscores the importance of understanding the kinetics of pollutant degradation using biochar to maximize its synergies for potential environmental biodegradation. Finally, the study identifies the technological gaps and outlines future research advancements in biochar production and its applications for environmental biodegradation.
This paper presents a fabricated solar-blind phototransistor based on hydrogen-terminated diamond. The phototransistor shows a large photocurrent and enhancement of responsivity over conventional two-terminal diamond-based photodetector. These enhancement effects are owing to the internal gain of the phototransistor. The fabricated phototransistor exhibits a high photoresponsivity (R) of 2.16 × 104 A/W and a detectivity (D*) of 9.63 × 1011 jones, with gate voltage (VG) and drain voltage of approximately -1.5 V and -5 V, respectively, under 213 nm light illumination. Even at ultralow operating voltage of -0.01 V, the device records satisfactory performance with R and D* of 146.7 A/W and 6.19 × 1010 jones, respectively. By adjusting the VG, photocurrent generation in the device can be continuously tuned from the fast photoconductive effect to the optical gating effect with high optical gain. When VG increases from 1.4 to 2.4 V, the decay time decreases from 1512.0 to 25.5 ms. Therefore, responsivity, dark current, Iphoto/Idark, and decay time of the device can be well tuned by VG.