Affiliations 

  • 1 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia
  • 2 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia; Centre on Technological Readiness and Innovation in Business Technopreneurship (CONTRIBUTE), University of Technology Sarawak, 96000 Sibu, Sarawak, Malaysia
  • 3 Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
  • 4 Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, No.1, Jalan Universiti, Sibu, Sarawak, Malaysia
  • 5 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
  • 6 NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, Penang, Georgetown 10400, Malaysia
  • 7 Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
  • 8 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu, Kuala Nerus, 21030, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India. Electronic address: lam@umt.edu.my
Bioresour Technol, 2023 Nov;387:129592.
PMID: 37549710 DOI: 10.1016/j.biortech.2023.129592

Abstract

Over the past few decades, extensive research has been conducted to develop cost-effective and high-quality biochar for environmental biodegradation purposes. Pyrolysis has emerged as a promising method for recovering biochar from biomass and waste materials. This study provides an overview of the current state-of-the-art biochar production technology, including the advancements and biochar applications in organic pollutants remediation, particularly wastewater treatment. Substantial progress has been made in biochar production through advanced thermochemical technologies. Moreover, the review underscores the importance of understanding the kinetics of pollutant degradation using biochar to maximize its synergies for potential environmental biodegradation. Finally, the study identifies the technological gaps and outlines future research advancements in biochar production and its applications for environmental biodegradation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.