Affiliations 

  • 1 PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia. Electronic address: chan.yiherng@petronas.com.my
  • 2 CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
  • 3 Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
  • 4 PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
  • 5 Chemical Engineering Department, Monash University, 3180, Victoria, Australia
  • 6 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
  • 7 Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
Bioresour Technol, 2023 Apr 17.
PMID: 37075852 DOI: 10.1016/j.biortech.2023.129061

Abstract

To achieve the main goal of net zero carbon emission, the shift from conventional fossil-based energy/products to renewable and low carbon-based energy/products is necessary. Biomass has been perceived as a carbon-neutral source from which energy and value-added products can be derived, while sludge is a slurry waste that inherently contains high amount of minerals and organic matters. Hence, thermochemical co-processing of biomass wastes and sludge could create positive synergistic effects, resulting in enhanced performance of the process (higher conversion or yield) and improved qualities or characteristics of the products as compared to that of mono-processing. This review presents the current progress and development for various thermochemical techniques of biomass-sludge co-conversion to energy and high-value products, and the potential applications of these products from circular economy's point of view. Also, these technologies are discussed from economic and environmental standpoints, and the outlook towards technology maturation and successful commercialization is laid out.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.