Affiliations 

  • 1 Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • 2 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Second floor, Jalan Macalister, Georgetown, Pulau Pinang 10400, Malaysia; Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • 3 School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
  • 4 School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
  • 5 Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
  • 6 Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, Roskilde, DK-4000 Denmark
  • 7 Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong. Electronic address: tsangyf@eduhk.hk
  • 8 Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia. Electronic address: lam@umt.edu.my
J Hazard Mater, 2022 01 05;421:126774.
PMID: 34364214 DOI: 10.1016/j.jhazmat.2021.126774

Abstract

Waste furniture boards (WFBs) contain hazardous formaldehyde and volatile organic compounds when left unmanaged or improperly disposed through landfilling and open burning. In this study, pyrolysis was examined as a disposal and recovery approach to convert three types of WFBs (i.e., particleboard, plywood, and fiberboard) into value-added chemicals using thermogravimetric analysis coupled with Fourier-transform infrared spectrometry (TG-FTIR) and pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS). TG-FTIR analysis shows that pyrolysis performed at an optimum temperature of 250-550 °C produced volatile products mainly consisting of carbon dioxide, carbon monoxide, and light hydrocarbons, such as methane. Py-GC/MS shows that pyrolysis at different final temperatures and heating rates recovered mainly phenols (25.9-54.7%) for potential use as additives in gasoline, colorants, and food. The calorific value of WFBs ranged from 16 to 18 MJ/kg but the WFBs showed high H/C (1.7-1.8) and O/C (0.8-1.0) ratios that provide low chemical energy during combustion. This result indicates that WFBs are not recommended to be burned directly as fuel, however, they can be pyrolyzed and converted into solid pyrolytic products such as biochar with improved properties for fuel application. Hazardous components, such as cyclopropylmethanol, were removed and converted into value-added compounds, such as 1,4:3,6-dianhydro-d-glucopyranose, for use in pharmaceuticals. These results show that the pyrolysis of WFBs at high temperature and low heating rate is a promising feature to produce value-added chemicals and reduce the formation of harmful chemical species. Thus, the release of hazardous formaldehyde and greenhouse gases into the environment is redirected.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.