Histamine is established as a potent inflammatory mediator and it is known to increased endothelial permeability by promoting gap formation between endothelial cells. Previous studies have shown that aqueous extract of Bixa orellana leaves (AEBO) exhibits antihistamine activity in vivo, yet the mechanism of its action on endothelial barrier function remains unclear. Therefore, the current study aimed to determine the protective effect of AEBO against histamine-induced hyperpermeability in vitro.
Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall-Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall-Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect was achieved at 56.7% with 20 mg/kg liposome-encapsulated diclofenac, and the lowest effect was shown with 0 mg/kg liposome formulation of 8.89%. The present study suggests that liposome-encapsulated diclofenac exhibits higher antinociceptive efficacy in a dose-dependent manner in comparison with free-form diclofenac.
Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.
The present study was carried out to explore the antinociceptive as well as the anti-inflammatory effects of an ethanol extract of Stachytarpheta jamaicensis (L.) Vahl (EESJ) using 3 models of nociception and 2 models of inflammation in experimental animals.
Clinacanthus nutans Lindau leaves (CN) have been used in traditional medicine but the therapeutic potential has not been explored for cancer prevention and treatment. Current study aimed to evaluate the antioxidant and antiproliferative effects of CN, extracted in chloroform, methanol, and water, on cancer cell lines. Antioxidant properties of CN were evaluated using DPPH, galvinoxyl, nitric oxide, and hydrogen peroxide based radical scavenging assays, whereas the tumoricidal effect was tested on HepG2, IMR32, NCL-H23, SNU-1, Hela, LS-174T, K562, Raji, and IMR32 cancer cells using MTT assay. Our data showed that CN in chloroform extract was a good antioxidant against DPPH and galvinoxyl radicals, but less effective in negating nitric oxide and hydrogen peroxide radicals. Chloroform extract exerted the highest antiproliferative effect on K-562 (91.28 ± 0.03%) and Raji cell lines (88.97 ± 1.07%) at 100 μ g/ml and the other five cancer cell lines in a concentration-dependent manner, but not on IMR-32 cells. Fourteen known compounds were identified in chloroform extract, which was analysed by gas chromatography-mass spectra analysis. In conclusion, CN extracts possess antioxidant and antiproliferative properties against cultured cancer cell lines, suggesting an alternate adjunctive regimen for cancer prevention or treatment.
OBJECTIVES: To determine the anti-inflammatory and antinociceptive activities of Mitragyna speciosa Korth methanol extract in rodents.
MATERIALS AND METHODS: Anti-inflammatory activity was evaluated using carrageenan-induced paw edema and cotton pellet-induced granuloma tests in rats. Antinociceptive activity was measured using the writhing test and the hot plate test in mice, and the formalin test in rats. All drugs and extracts were diluted in dH(2)O and administered through the intraperitoneal route. Results were analyzed using one-way ANOVA followed by Dunnett's test for multiple comparisons among groups.
RESULTS: Results showed that intraperitoneal administration of the extract at doses of 100 and 200 mg/kg produced significant dose-dependent activity in all of the nociceptive models evaluated (p < 0.05). With the formalin test, the antinociceptive activity in mice was inhibited only at the highest dose of the extract (200 mg/kg). The study also showed that intraperitoneal administration of the methanol extract of M. speciosa (100 and 200 mg/kg) significantly and dose-dependently suppressed the development of carrageenan-induced rat paw edema (p < 0.05). In the chronic test, however, significant reduction in granulomatous tissue formation in rats was observed only at the highest dose of the methanol extract of M. speciosa (200 mg/kg, p < 0.05).
CONCLUSION: The present study suggests the presence of potent antinociceptive and anti-inflammatory principles in the extract, supporting its folkloric use for the treatment of these conditions.