Displaying all 5 publications

Abstract:
Sort:
  1. Cowling BJ, Caini S, Chotpitayasunondh T, Djauzi S, Gatchalian SR, Huang QS, et al.
    Vaccine, 2017 Feb 07;35(6):856-864.
    PMID: 28081970 DOI: 10.1016/j.vaccine.2016.12.064
    The fourth roundtable meeting of the Global Influenza Initiative (GII) was held in Hong Kong, China, in July 2015. An objective of this meeting was to gain a broader understanding of the epidemiology, surveillance, vaccination policies and programs, and obstacles to vaccination of influenza in the Asia-Pacific region through presentations of data from Australia, Hong Kong, India, Indonesia, Malaysia, New Zealand, the Philippines, Taiwan, Thailand, and Vietnam. As well as a need for improved levels of surveillance in some areas, a range of factors were identified that act as barriers to vaccination in some countries, including differences in climate and geography, logistical challenges, funding, lack of vaccine awareness and education, safety concerns, perceived lack of vaccine effectiveness, and lack of inclusion in national guidelines. From the presentations at the meeting, the GII discussed a number of recommendations for easing the burden of influenza and overcoming the current challenges in the Asia-Pacific region. These recommendations encompass the need to improve surveillance and availability of epidemiological data; the development and publication of national guidelines, where not currently available and/or that are in line with those proposed by the World Health Organization; the requirement for optimal timing of vaccination programs according to local or country-specific epidemiology; and calls for advocacy and government support of vaccination programs in order to improve availability and uptake and coverage. In conclusion, in addition to the varied epidemiology of seasonal influenza across this diverse region, there are a number of logistical and resourcing issues that present a challenge to the development of optimally effective vaccination strategies and that need to be overcome to improve access to and uptake of seasonal influenza vaccines. The GII has developed a number of recommendations to address these challenges and improve the control of influenza.
  2. Thisyakorn U, Carlos J, Chotpitayasunondh T, Dien TM, Gonzales MLAM, Huong NTL, et al.
    Hum Vaccin Immunother, 2022 Nov 30;18(6):2110759.
    PMID: 36084311 DOI: 10.1080/21645515.2022.2110759
    Invasive meningococcal disease (IMD) imposes a significant burden on the global community due to its high case fatality rate (4-20%) and the risk of long-term sequelae for one in five survivors. An expert group meeting was held to discuss the epidemiology of IMD and immunization policies in Malaysia, Philippines, Thailand, and Vietnam. Most of these countries do not include meningococcal immunization in their routine vaccination programs, except for high-risk groups such as immunocompromised people and pilgrims. It is difficult to estimate the epidemiology of IMD in the highly diverse Asia-Pacific region, but available evidence indicate serogroup B is increasingly dominant. Disease surveillance systems differ by country. IMD is not a notifiable disease in some of them. Without an adequate surveillance system in the region, the risk and the burden of IMD might well be underestimated. With the availability of new combined meningococcal vaccines and the World Health Organization roadmap to defeat bacterial meningitis by 2030, a better understanding of the epidemiology of IMD in the Asia-Pacific region is needed.
  3. Nealon J, Taurel AF, Capeding MR, Tran NH, Hadinegoro SR, Chotpitayasunondh T, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004918.
    PMID: 27532617 DOI: 10.1371/journal.pntd.0004918
    Dengue incidence has increased globally, but empirical burden estimates are scarce. Prospective methods are best-able to capture all severities of disease. CYD14 was an observer-blinded dengue vaccine study conducted in children 2-14 years of age in Indonesia, Malaysia, Thailand, the Philippines, and Vietnam. The control group received no vaccine and resembled a prospective, observational study. We calculated the rates of dengue according to different laboratory or clinical criteria to make inferences about dengue burden, and compared with rates reported in the passive surveillance systems to calculate expansion factors which describe under-reporting. Over 6,933 person-years of observation in the control group there were 319 virologically confirmed dengue cases, a crude attack rate of 4.6%/year. Of these, 92 cases (28.8%) were clinically diagnosed as dengue fever or dengue hemorrhagic fever by investigators and 227 were not, indicating that most symptomatic disease fails to satisfy existing case definitions. When examining different case definitions, there was an inverse relationship between clinical severity and observed incidence rates. CYD14's active surveillance system captured a greater proportion of symptomatic dengue than national passive surveillance systems, giving rise to expansion factors ranging from 0.5 to 31.7. This analysis showed substantial, unpredictable and variable under-reporting of symptomatic dengue, even within a controlled clinical trial environment, and emphasizes that burden estimates are highly sensitive to case definitions. These data will assist in generating disease burden estimates and have important policy implications when considering the introduction and health economics of dengue prevention and control interventions.
  4. Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, et al.
    Lancet, 2014 Oct 11;384(9951):1358-65.
    PMID: 25018116 DOI: 10.1016/S0140-6736(14)61060-6
    An estimated 100 million people have symptomatic dengue infection every year. This is the first report of a phase 3 vaccine efficacy trial of a candidate dengue vaccine. We aimed to assess the efficacy of the CYD dengue vaccine against symptomatic, virologically confirmed dengue in children.
  5. Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al.
    N Engl J Med, 2015 Sep 24;373(13):1195-206.
    PMID: 26214039 DOI: 10.1056/NEJMoa1506223
    BACKGROUND: A candidate tetravalent dengue vaccine is being assessed in three clinical trials involving more than 35,000 children between the ages of 2 and 16 years in Asian-Pacific and Latin American countries. We report the results of long-term follow-up interim analyses and integrated efficacy analyses.
    METHODS: We are assessing the incidence of hospitalization for virologically confirmed dengue as a surrogate safety end point during follow-up in years 3 to 6 of two phase 3 trials, CYD14 and CYD15, and a phase 2b trial, CYD23/57. We estimated vaccine efficacy using pooled data from the first 25 months of CYD14 and CYD15.
    RESULTS: Follow-up data were available for 10,165 of 10,275 participants (99%) in CYD14 and 19,898 of 20,869 participants (95%) in CYD15. Data were available for 3203 of the 4002 participants (80%) in the CYD23 trial included in CYD57. During year 3 in the CYD14, CYD15, and CYD57 trials combined, hospitalization for virologically confirmed dengue occurred in 65 of 22,177 participants in the vaccine group and 39 of 11,089 participants in the control group. Pooled relative risks of hospitalization for dengue were 0.84 (95% confidence interval [CI], 0.56 to 1.24) among all participants, 1.58 (95% CI, 0.83 to 3.02) among those under the age of 9 years, and 0.50 (95% CI, 0.29 to 0.86) among those 9 years of age or older. During year 3, hospitalization for severe dengue, as defined by the independent data monitoring committee criteria, occurred in 18 of 22,177 participants in the vaccine group and 6 of 11,089 participants in the control group. Pooled rates of efficacy for symptomatic dengue during the first 25 months were 60.3% (95% CI, 55.7 to 64.5) for all participants, 65.6% (95% CI, 60.7 to 69.9) for those 9 years of age or older, and 44.6% (95% CI, 31.6 to 55.0) for those younger than 9 years of age.
    CONCLUSIONS: Although the unexplained higher incidence of hospitalization for dengue in year 3 among children younger than 9 years of age needs to be carefully monitored during long-term follow-up, the risk among children 2 to 16 years of age was lower in the vaccine group than in the control group. (Funded by Sanofi Pasteur; ClinicalTrials.gov numbers, NCT00842530, NCT01983553, NCT01373281, and NCT01374516.).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links