Displaying all 9 publications

Abstract:
Sort:
  1. Bhuiyan MS, Choudhury IA, Dahari M
    Biol Cybern, 2015 Apr;109(2):141-62.
    PMID: 25491411 DOI: 10.1007/s00422-014-0635-1
    Development of an advanced control system for prostheses (artificial limbs) is necessary to provide functionality, effectiveness, and preferably the feeling of a sound living limb. The development of the control system has introduced varieties of control strategies depending on the application. This paper reviews some control systems used for prosthetics, orthotics, and exoskeletons. The advantages and limitations of different control systems for particular applications have been discussed and presented in a comparative manner to help in deciding the appropriate method for pertinent application.
  2. Yousefi S, Atrens AD, Sauret E, Dahari M, Hooman K
    ScientificWorldJournal, 2015;2015:843068.
    PMID: 25879074 DOI: 10.1155/2015/843068
    Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.
  3. Mohd Zain, N., Ab Malek, N. N. F., Che Mut, N. A. I., Mohd Norsuddin, N., Abdullah Suhaimi, S. A., Ahmad Dahari, M., et al.
    MyJurnal
    Music is one of the suggested interventions that can reduce stress caused by pain from mammography procedures. The different types of music might affect the anxiety level during a mammogram screening. Thus, the study aimed to determine the anxiety level of women who underwent mammogram screening according to different types of music. A cross-sectional study was conducted on 60 women by using the purposive sampling technique in the radiology department at randomly selected private hospitals in Klang Valley from November 2018 to November 2019. Respondents were randomly divided based on the day of mammogram screening into two groups; namely slow and upbeat music. Descriptive analysis was used to determine the anxiety level for each group and T-test analysis was used to compare the significance of anxiety level between both groups. A total of 60 respondents had participated in this study with a total of 30 (50.0%) respondents allocated in slow music, while another 30 (50.0%) respondents were allocated in upbeat music. Patients who underwent mammography screening while listening to slow music had a high anxiety level (70.0%) as compared to upbeat music group (63.3%). There was no significant effect for music, t (60) = -0.54, p = 0.59, despite slow music (M = 1.70, SD = 0.47) attaining higher anxiety level than the upbeat music (M = 1.63, SD = 0.49). Upbeat music has the potential in reducing the anxiety level of women undergoing mammography screening.
  4. Sadeghinezhad E, Kazi SN, Dahari M, Safaei MR, Sadri R, Badarudin A
    Crit Rev Food Sci Nutr, 2015;55(12):1724-43.
    PMID: 24731003 DOI: 10.1080/10408398.2012.752343
    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.
  5. Nur NM, Dawal SZ, Dahari M, Sanusi J
    J Phys Ther Sci, 2015 Aug;27(8):2431-3.
    PMID: 26357421 DOI: 10.1589/jpts.27.2431
    [Purpose] The purpose of this study was to investigate the effects of energy expenditure rate on work productivity performance at different levels of production standard time. [Subjects and Methods] Twenty industrial workers performed repetitive tasks at three different levels of production standard time, normal, hard, and very hard. Work productivity and energy expenditure rate were recorded during the experimental tasks. [Results] The work productivity target was not attainable for the hard and very hard production standard times. This was attributed to the energy expenditure rate, which increased as the level of production standard time became harder. The percentage change in energy expenditure rate for the very hard level (32.5%) relative to the normal level was twice that of the hard level (15.5%), indicating a higher risk of work-related musculoskeletal disorders for the harder production standard time. The energy expenditure rate for the very hard production standard time (1.36 kcal/min) was found to exceed the maximum energy expenditure rate recommended for light repetitive tasks involving both arms (1.2 kcal/min). [Conclusion] The present study shows that working with an energy expenditure rate that is either equal to or above the maximum energy expenditure rate of the tasks results in decreased work productivity performance due to the onset of physical fatigue and a higher risks of work-related musculoskeletal disorders.
  6. Nur NM, Dawal SZ, Dahari M, Sanusi J
    J Phys Ther Sci, 2015 Jul;27(7):2323-6.
    PMID: 26311974 DOI: 10.1589/jpts.27.2323
    [Purpose] This study investigated the variations in muscle fatigue, time to fatigue, and maximum task duration at different levels of production standard time. [Methods] Twenty subjects performed repetitive tasks at three different levels of production standard time corresponding to "normal", "hard" and "very hard". Surface electromyography was used to measure the muscle activity. [Results] The results showed that muscle activity was significantly affected by the production standard time level. Muscle activity increased twice in percentage as the production standard time shifted from hard to very hard (6.9% vs. 12.9%). The muscle activity increased over time, indicating muscle fatigue. The muscle fatigue rate increased for the harder production standard time (Hard: 0.105; Very hard: 0.115), which indicated the associated higher risk of work-related musculoskeletal disorders. Muscle fatigue was also found to occur earlier for hard and very hard production standard times. [Conclusion] It is recommended that the maximum task duration should not exceed 5.6, 2.9, and 2.2 hours for normal, hard, and very hard production standard times, respectively, in order to maintain work performance and minimize the risk of work-related musculoskeletal disorders.
  7. Bhuiyan MSH, Choudhury IA, Dahari M, Nukman Y, Dawal SZ
    Appl Bionics Biomech, 2017;2017:7595642.
    PMID: 28584518 DOI: 10.1155/2017/7595642
    A gear-based knee joint is designed to improve the performance of mechanical-type above-knee prostheses. The gear set with the help of some bracing, and bracket arrangement, is used to enable the prosthesis to follow the residual limb movement. The motion analysis and finite-element analysis (FEA) of knee joint components are carried out to assess the feasibility of the design. The maximum stress of 29.74 MPa and maximum strain of 2.393e-004 are obtained in the gear, whereas the maximum displacement of 7.975 mm occurred in the stopper of the knee arrangement. The factor of safety of 3.5 obtained from the FE analysis indicated no possibility of design failure. The results obtained from the FE analysis are then compared with the real data obtained from the literature for a similar subject. The pattern of motion analysis results has shown a great resemblance with the gait cycle of a healthy biological limb.
  8. Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, et al.
    Nanoscale Res Lett, 2014;9(1):151.
    PMID: 24678607 DOI: 10.1186/1556-276X-9-151
    Recently, there has been considerable interest in the use of nanofluids for enhancing thermal performance. It has been shown that carbon nanotubes (CNTs) are capable of enhancing the thermal performance of conventional working liquids. Although much work has been devoted on the impact of CNT concentrations on the thermo-physical properties of nanofluids, the effects of preparation methods on the stability, thermal conductivity and viscosity of CNT suspensions are not well understood. This study is focused on providing experimental data on the effects of ultrasonication, temperature and surfactant on the thermo-physical properties of multi-walled carbon nanotube (MWCNT) nanofluids. Three types of surfactants were used in the experiments, namely, gum arabic (GA), sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). The thermal conductivity and viscosity of the nanofluid suspensions were measured at various temperatures. The results showed that the use of GA in the nanofluid leads to superior thermal conductivity compared to the use of SDBS and SDS. With distilled water as the base liquid, the samples were prepared with 0.5 wt.% MWCNTs and 0.25% GA and sonicated at various times. The results showed that the sonication time influences the thermal conductivity, viscosity and dispersion of nanofluids. The thermal conductivity of nanofluids was typically enhanced with an increase in temperature and sonication time. In the present study, the maximum thermal conductivity enhancement was found to be 22.31% (the ratio of 1.22) at temperature of 45°C and sonication time of 40 min. The viscosity of nanofluids exhibited non-Newtonian shear-thinning behaviour. It was found that the viscosity of MWCNT nanofluids increases to a maximum value at a sonication time of 7 min and subsequently decreases with a further increase in sonication time. The presented data clearly indicated that the viscosity and thermal conductivity of nanofluids are influenced by the sonication time. Image analysis was carried out using TEM in order to observe the dispersion characteristics of all samples. The findings revealed that the CNT agglomerates breakup with increasing sonication time. At high sonication times, all agglomerates disappear and the CNTs are fragmented and their mean length decreases.
  9. Goodarzi M, Safaei MR, Oztop HF, Karimipour A, Sadeghinezhad E, Dahari M, et al.
    ScientificWorldJournal, 2014;2014:761745.
    PMID: 24778601 DOI: 10.1155/2014/761745
    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links