Displaying all 8 publications

Abstract:
Sort:
  1. Arzmi MH, Dashper S, McCullough M
    J Oral Pathol Med, 2019 Aug;48(7):546-551.
    PMID: 31183906 DOI: 10.1111/jop.12905
    The oral microbiome is composed of microorganisms residing in the oral cavity, which are critical components of health and disease. Disruption of the oral microbiome has been proven to influence the course of oral diseases, especially among immunocompromised patients. Oral microbiome is comprised of inter-kingdom microorganisms, including yeasts such as Candida albicans, bacteria, archaea and viruses. These microorganisms can interact synergistically, mutualistically and antagonistically, wherein the sum of these interactions dictates the composition of the oral microbiome. For instance, polymicrobial interactions can improve the ability of C albicans to form biofilm, which subsequently increases the colonisation of oral mucosa by the yeast. Polymicrobial interactions of C albicans with other members of the oral microbiome have been reported to enhance the malignant phenotype of oral cancer cells, such as the attachment to extracellular matrix molecules (ECM) and epithelial-mesenchymal transition (EMT). Polymicrobial interactions may also exacerbate an inflammatory response in oral epithelial cells, which may play a role in carcinogenesis. This review focuses on the role of polymicrobial interactions between C albicans and other oral microorganisms, including its role in promoting oral carcinogenesis.
  2. Arzmi MH, Dashper S, Catmull D, Cirillo N, Reynolds EC, McCullough M
    FEMS Yeast Res., 2015 Aug;15(5):fov038.
    PMID: 26054855 DOI: 10.1093/femsyr/fov038
    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent.
  3. Arzmi MH, Alnuaimi AD, Dashper S, Cirillo N, Reynolds EC, McCullough M
    Med Mycol, 2016 Nov 01;54(8):856-64.
    PMID: 27354487 DOI: 10.1093/mmy/myw042
    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.
  4. Mokhtar M, Rismayuddin NAR, Mat Yassim AS, Ahmad H, Abdul Wahab R, Dashper S, et al.
    Biofouling, 2021 08;37(7):767-776.
    PMID: 34425729 DOI: 10.1080/08927014.2021.1967334
    Candida albicans causes candidiasis, particularly in immunocompromised patients. Streptococcus salivarius K12 (K12) is a probiotic isolated from a healthy oral cavity. The study aimed to determine the effect of K12 on C. albicans aggregation, biofilm formation and dimorphism. C. albicans ATCC MYA-4901, acquired immunodeficiency syndrome (AIDS) isolate (ALC2), and oral cancer isolate (ALC3) and K12 were used in the study. All C. albicans strains and K12 were grown in yeast peptone dextrose agar and brain heart infusion agar, respectively, prior to aggregation, biofilm and dimorphism assays. Auto-aggregation of C. albicans MYA-4901 and ALC2 was categorised as high, while the co-aggregation of the strains was low in the presence of K12. C. albicans total cell count decreased significantly when co-cultured with K12 compared with monocultured C. albicans biofilm (p 
  5. Mohd Fuad AS, Amran NA, Nasruddin NS, Burhanudin NA, Dashper S, Arzmi MH
    Probiotics Antimicrob Proteins, 2023 Oct;15(5):1298-1311.
    PMID: 36048406 DOI: 10.1007/s12602-022-09985-7
    Oral carcinogenesis is preceded by oral diseases associated with inflammation such as periodontitis and oral candidiasis, which are contributed by chronic alcoholism, smoking, poor oral hygiene, and microbial infections. Dysbiosis is an imbalance of microbial composition due to oral infection, which has been reported to contribute to oral carcinogenesis. Therefore, in this review, we summarised the role of probiotics, prebiotics, synbiotics, and postbiotics in promoting a balanced oral microbiome, which may prevent oral carcinogenesis due to oral infections. Probiotics have been shown to produce biofilm, which possesses antibacterial activity against oral pathogens. Meanwhile, prebiotics can support growth and increase the benefit of probiotics. In addition, postbiotics possess antibacterial, anticariogenic, and anticancer properties that potentially aid in oral cancer prevention and treatment. The use of probiotics, prebiotics, synbiotics, and postbiotics for oral cancer management is still limited despite their vast potential, thus, discovering their prospects could herald a novel approach to disease prevention and treatment while participating in combating antimicrobial resistance.
  6. An S, Judge RB, Wong RH, Arzmi MH, Palamara JE, Dashper SG
    Aust Dent J, 2018 Jun 20.
    PMID: 29923610 DOI: 10.1111/adj.12640
    BACKGROUND: This study aimed to fabricate a denture base resin (DBR) containing phytoncide microcapsules (PTMCs) and determine the mechanical properties of the resin and antifungal activity.

    METHODS: Fifty-four heat-cured rectangular DBR specimens (64 × 10 × 3.3 ± 0.2 mm) containing nine concentrations of PTMC between 0 and 5% (wt/wt) were fabricated and subjected to a three-point bending test. A phytoncide release bioassay was developed using DBR containing 0% and 2.5% PTMCs (wt/wt) in a 24 well-plate assay with incubation of Porphyromonas gingivalis at 37 °C for 74 h. The antifungal activity of PTMCs against Candida albicans, in a pH 5.5 acidic environment was determined in a plate assay.

    RESULTS: Flexural strength decreased with increasing PTMC concentration from 97.58 ± 4.79 MPa for the DBR alone to 53.66 ± 2.46 MPa for DBR containing 5.0% PTMC. No release of phytoncide from the PTMCs in the DBR was detected at pH 7.4. The PTMCs had a minimal inhibitory concentration of 2.6% (wt/vol) against C. albicans at pH 5.5.

    CONCLUSIONS: PTMCs can be added to DBR 2.5% (wt/wt) without adversely affecting flexural strength. PTMCs released the antimicrobial agent at pH 5.5 at concentrations sufficient to inhibit the growth of the C. albicans.

  7. Arzmi MH, Cirillo N, Lenzo JC, Catmull DV, O'Brien-Simpson N, Reynolds EC, et al.
    Carcinogenesis, 2019 03 12;40(1):184-193.
    PMID: 30428016 DOI: 10.1093/carcin/bgy137
    Microbial infection has been shown to involve in oral carcinogenesis; however, the underlying mechanisms remain poorly understood. The present study aimed to characterize the growth of oral microorganisms as both monospecies and polymicrobial biofilms and determine the effects of their products on oral keratinocytes. Candida albicans (ALC3), Actinomyces naeslundii (AN) and Streptococcus mutans (SM) biofilms or a combination of these (TRI) were grown in flow-cell system for 24 h. The biofilms were subjected to fluorescent in situ hybridization using species-specific probes and analysed using confocal laser scanning microscopy. The effluent derived from each biofilm was collected and incubated with malignant (H357) and normal (OKF6) oral keratinocytes to assess extracellular matrix adhesion, epithelial-mesenchymal transition (EMT) and cytokines expression. Incubation of OKF6 with ALC3 and TRI effluent significantly decreased adhesion of the oral keratinocyte to collagen I, whereas incubation of H357 with similar effluent increased adhesion of the oral keratinocyte to laminin I, significantly when compared with incubation with artificial saliva containing serum-free medium (NE; P < 0.05). In OKF6, changes in E-cadherin and vimentin expression were not consistent with EMT although there was evidence of a mesenchymal to epithelial transition in malignant oral keratinocytes incubated with AN and SM effluent. A significant increase of pro-inflammatory cytokines expression, particularly interleukin (IL)-6 and IL-8, was observed when H357 was incubated with all biofilm effluents after 2- and 24-h incubation when compared with NE (P < 0.05). In conclusion, C.albicans, A.naeslundii and S.mutans form polymicrobial biofilms which differentially modulate malignant phenotype of oral keratinocytes.
  8. Engku Nasrullah Satiman EAF, Ahmad H, Ramzi AB, Abdul Wahab R, Kaderi MA, Wan Harun WHA, et al.
    J Oral Pathol Med, 2020 Oct;49(9):835-841.
    PMID: 32170981 DOI: 10.1111/jop.13014
    Oral squamous cell carcinoma is associated with many known risk factors including tobacco smoking, chronic alcoholism, poor oral hygiene, unhealthy dietary habits and microbial infection. Previous studies have highlighted Candida albicans host tissue infection as a risk factor in the initiation and progression of oral cancer. C albicans invasion induces several cancerous hallmarks, such as activation of proto-oncogenes, induction of DNA damage and overexpression of inflammatory signalling pathways. However, the molecular mechanisms behind these responses remain unclear. A recently discovered fungal toxin peptide, candidalysin, has been reported as an essential molecule in epithelial damage and host recognition of C albicans infection. Candidalysin has a clear role in inflammasome activation and induction of cell damage. Several inflammatory molecules such as IL-6, IL-17, NLRP3 and GM-CSF have been linked to carcinogenesis. Candidalysin is encoded by the ECE1 gene, which has been linked to virulence factors of C albicans such as adhesion, biofilm formation and filamentation properties. This review discusses the recent epidemiological burden of oral cancer and highlights the significance of the ECE1 gene and the ECE1 protein breakdown product, candidalysin in oral malignancy. The immunological and molecular mechanisms behind oral malignancy induced by inflammation and the role of the toxic fungal peptide candidalysin in oral carcinogenesis are explored. With increasing evidence associating C albicans with oral carcinoma, identifying the possible fungal pathogenicity factors including the role of candidalysin can assist in efforts to understand the link between C albicans infection and carcinogenesis, and pave the way for research into therapeutic potentials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links