Displaying all 5 publications

Abstract:
Sort:
  1. Okamura H, Kano K, Yap CK, Emmanouil C
    PMID: 33948839 DOI: 10.1007/s11356-021-14187-9
    This study sought to clarify whether suspended particles containing high Cu concentrations are present in the sea-surface microlayer (S-SML). For this reason, suspended particles (10-2000 μm) in the S-SML were collected periodically from a ship mooring pond during 2018-2020, and the acid-soluble Cu concentration in the suspended particles was measured as particulate Cu (P-Cu). The highest concentration of P-Cu in the S-SML of the pond was 75 μg L-1 with a 90th percentile value of 2.5 μg L-1. This is below P-Cu values reported for the S-SML in North American ports, but 140 times higher than this found in bulk seawater in the Atlantic Ocean. The highest P-Cu concentration in the S-SML of non-organism (abiotic) origin was 17 μg L-1, and the abiotic P-Cu to P-Cu ratio varied from 0.2 to 100%, likely depending on the quality and quantity of biogenic material in the S-SML samples. It is assumed that the S-SML particles examined here contain high Cu concentrations originating from ship antifouling paints.
  2. Zhou M, Yanai H, Yap CK, Emmanouil C, Okamura H
    J Xenobiot, 2023 Nov 07;13(4):685-703.
    PMID: 37987445 DOI: 10.3390/jox13040044
    The abundance, distribution, and composition of microparticles (MPs) in the sea-surface microlayer (S-SML, less than 100 μm of sea surface in this experiment) and in bulk water (1 m under the sea surface) were investigated to evaluate the pollution level of MPs in Osaka Bay in Japan. Both seawater fractions were collected at eight sites including ship navigation routes, the coastal area, and the center of Osaka Bay for 2021-2023. MPs were filtered for four size ranges (10-53, 53-125, 125-500, and >500 μm) and then digested with H2O2. MPs' abundance was microscopically assessed; and polymer types of MPs were identified by a Fourier transform infrared spectrometer (FTIR). For the 22 collections performed along eight sites, the average MPs' abundance was 903 ± 921 items/kg for S-SML, while for the 25 collections performed along the same sites, the average MPs' abundance was 55.9 ± 40.4 items/kg for bulk water, respectively. MPs in both S-SML and bulk water exhibited their highest abundance along the navigation routes. The smallest MPs (10-53 μm) accounted for 81.2% and for 62.2% of all MPs in S-SML and in bulk water among all sites, respectively. Polymethyl methacrylate (PMMA) was the major type of MPs identified while minor ones were polyethylene, polyesters, polystyrene, polypropylene, polyvinyl chloride, polyamide, etc. PMMA comprised 95.1% of total MPs in S-SML and 45.6% of total MPs in bulk water. In addition, PMMA accounted for 96.6% in S-SML and 49.5% in bulk water for the smallest MP category (10-53 μm). It can be assumed that the MP sources were marine paints-primarily APPs (antifouling paint particles)-as well as land coatings. Sea pollution due to microparticles from ship vessels should be given proper attention.
  3. Nomura M, Okamura H, Horie Y, Yap CK, Emmanouil C, Uwai S, et al.
    Chemosphere, 2023 Jan;312(Pt 1):137141.
    PMID: 36343734 DOI: 10.1016/j.chemosphere.2022.137141
    Seaweeds are some of the principal primary producers of marine environments, and they are important ecological elements of coastal ecosystems. The effects of harmful chemicals on seaweeds may adversely affect coastal ecosystems, hence we aimed to develop a new phytotoxicity test using the gametophytes of a common temperate kelp species, Undaria pinnatifida (KU-1630), for the widely used antifouling chemical substances Cybutryne, Diuron, Cu2+, and Zn2+. Toxicity to gametophytes of U. pinnatifida was assessed by comparing the relative growth rate (RGR) at the logarithmic growth phase. Fragmentation method, initial algal biomass, photon irradiance, and adhesive period were investigated for developing optimal test conditions. Cybutryne exposure tests were performed with seven replicates and control, the RGR ranging from 0.17 to 0.19, while mean 7-day EC50 and no observed effect concentration (NOEC) were 5.1 μg/L and 1.8 μg/L, respectively. The 7-day EC50 for other antifoulants was 14 μg/L for Diuron, 17 μg/L for Cu2+, and 1500 μg/L for Zn2+. This test method demonstrated high sensitivity and reproducibility, and it may be added to the routine methods used for toxicity evaluation of hazardous chemicals.
  4. Zhou M, Osaka I, Hashimoto K, Yap CK, Emmanouil C, Nakano T, et al.
    J Hazard Mater, 2024 Dec 05;480:136085.
    PMID: 39395392 DOI: 10.1016/j.jhazmat.2024.136085
    Antifouling biocides such as Cu, Zn, and organic compounds not only inhibit adhesion of sessile organisms on ship hull but also possess toxicity to non-sessile organisms in marine environment. Thus, we firstly investigated the heavy metals and polymer types of anthropogenic microparticles (MPs) floating in the sea-surface microlayer (S-SML) in Osaka Bay. 7 types of MPs containing different metals (Cu, Cu-Zn, Zn, Ti, Sn, Ba and Fe-Mn-Ni) were found. The polymer type for 97.8 % of Cu and Cu-Zn MPs (41 samples) and 52.6 % of Zn MPs (19 samples) was acrylic resins which are widely used as binders in contemporary antifouling paints for ships; concentrations of 511-54,000 mg/kg for Cu and 95.1-13,200 mg/kg for Zn were found in these MPs. The high metal concentrations found the co-existence of acrylic polymers point towards an origin from antifouling paint particles (APPs). Furthermore, to quantify Cu and Zn concentrations in these MPs based on X-ray fluorescence spectroscopy (μ-XRF), calibration curves obtained from standard paint particles containing different Cu and Zn concentrations and different particle sizes made with similar matrix used in commercial antifouling paint were firstly established, according to which highly reliable Cu and Zn concentrations in MPs were obtained.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links