DESIGN: This is a secondary analysis of a multicenter, retrospective, cohort study. Data on epidemiology, ventilation, therapies, and outcomes were collected and analyzed. Patients were classified into two mutually exclusive groups (extrapulmonary pediatric acute respiratory distress syndrome and pulmonary pediatric acute respiratory distress syndrome) based on etiologies. Primary outcome was PICU mortality. Cox proportional hazard regression was used to identify risk factors for mortality.
SETTING: Ten multidisciplinary PICUs in Asia.
PATIENTS: Mechanically ventilated children meeting the Pediatric Acute Lung Injury Consensus Conference criteria for pediatric acute respiratory distress syndrome between 2009 and 2015.
INTERVENTIONS: None.
MEASUREMENTS AND MAIN RESULTS: Forty-one of 307 patients (13.4%) and 266 of 307 patients (86.6%) were classified into extrapulmonary pediatric acute respiratory distress syndrome and pulmonary pediatric acute respiratory distress syndrome groups, respectively. The most common causes for extrapulmonary pediatric acute respiratory distress syndrome and pulmonary pediatric acute respiratory distress syndrome were sepsis (82.9%) and pneumonia (91.7%), respectively. Children with extrapulmonary pediatric acute respiratory distress syndrome were older, had higher admission severity scores, and had a greater proportion of organ dysfunction compared with pulmonary pediatric acute respiratory distress syndrome group. Patients in the extrapulmonary pediatric acute respiratory distress syndrome group had higher mortality (48.8% vs 24.8%; p = 0.002) and reduced ventilator-free days (median 2.0 d [interquartile range 0.0-18.0 d] vs 19.0 d [0.5-24.0 d]; p = 0.001) compared with the pulmonary pediatric acute respiratory distress syndrome group. After adjusting for site, severity of illness, comorbidities, multiple organ dysfunction, and severity of acute respiratory distress syndrome, extrapulmonary pediatric acute respiratory distress syndrome etiology was not associated with mortality (adjusted hazard ratio, 1.56 [95% CI, 0.90-2.71]).
CONCLUSIONS: Patients with extrapulmonary pediatric acute respiratory distress syndrome were sicker and had poorer clinical outcomes. However, after adjusting for confounders, it was not an independent risk factor for mortality.
METHODS: The main outcome measures were disability-adjusted life-years (DALYs) and mortality (deaths) attributable to high fasting plasma glucose (HFPG), high systolic blood pressure (HSBP), high low-density lipoprotein (HLDL) cholesterol, high body-mass index (HBMI), kidney dysfunction (KDF), and low bone mineral density (LBMD). The average annual percent change (AAPC) between 1990 and 2019 was analyzed using Joinpoint regression.
RESULTS: For all six metabolic risk factors, the rate of DALYs and death increased with age, accelerating for individuals older than 60 and 70 for DALYs and death, respectively. The AAPC value in rate of DALYs and death were higher in male patients than in female patients across 20 age groups. A double-peak pattern was observed for AAPC in the rate of DALYs and death, peaking at age 20-49 and at age 70-95 plus. The age-standardized rate of DALYs increased for HBMI and LBMD, decreased for HFPG, HSBP, KDF, and remained stable for HLDL from 1990 to 2019. In terms of age-standardized rate of DALYs, there was an increasing trend of neoplasms and neurological disorders attributable to HFPG; diabetes and kidney diseases, neurological disorders, sense organ diseases, musculoskeletal disorders, neoplasms, cardiovascular diseases, digestive diseases to HBMI; unintentional injuries to LBMD; and musculoskeletal disorders to KDF. Among 19 countries of Group 20, in 2019, the age-standardized rate of DALYs and death were ranked fourth to sixth for HFPG, HSBP, and HLDL, but ranked 10th to 15th for LBMD, KDF, and HBMI, despite the number of DALYs and death ranked first to second for six metabolic risk factors.
CONCLUSIONS: Population aging continuously accelerates the metabolic risk factor driven disease burden in China. Comprehensive and tight control of metabolic risk factors before 20 and 70 may help to mitigate the increasing disease burden and achieve healthy aging, respectively.