Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Foo KY
    Int J Inj Contr Saf Promot, 2015;22(2):127-35.
    PMID: 24328944 DOI: 10.1080/17457300.2013.855795
    Driving is a functional task that requires a complex interaction of visual perception, cognitive and motor skills. Next to circulatory diseases and cancer, road accidents remain the third epidemic cause of death internationally, with approximately half a million teen drivers killed annually. Driver behaviour has been cited as the pervasive marker of automotive crashes. A reliable and firm relationship between the positive parental model, message, and communication has been established. Specifically, the familial climate is proposed to be an important element of reinforcement, modelling, support and environmental determinant in interpreting personal perceptions, habits, values, and belief system. Confirming the assertion, this bibliographic review presents the most recent research findings on the contributions of families to the driving habits of teens. The emphasis is speculated on parental alcohol use, aggressiveness, attention-deficit/hyperactivity disorder, relationship, and intergenerational transmission of driving styles. Besides, the effects of familial supervision, monitoring, education and awareness, and genders, partners, and demographic influence on the driving habits are discussed and outlined.
  2. Foo KY, Hameed BH
    Bioresour Technol, 2012 Sep;119:234-40.
    PMID: 22728787 DOI: 10.1016/j.biortech.2012.05.061
    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons.
  3. Foo KY, Hameed BH
    Bioresour Technol, 2012 May;112:143-50.
    PMID: 22414577 DOI: 10.1016/j.biortech.2012.01.178
    The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.
  4. Foo KY, Hameed BH
    Bioresour Technol, 2012 May;111:425-32.
    PMID: 22386466 DOI: 10.1016/j.biortech.2012.01.141
    Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K(2)CO(3) activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m(2)/g, 2245.53 m(2)/g and 0.864 cm(3)/g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.
  5. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jul;116:522-5.
    PMID: 22595094 DOI: 10.1016/j.biortech.2012.03.123
    The feasibility of langsat empty fruit bunch waste for preparation of activated carbon (EFBLAC) by microwave-induced activation was explored. Activation with NaOH at the IR ratio of 1.25, microwave power of 600 W for 6 min produced EFBLAC with a carbon yield of 81.31% and adsorption uptake for MB of 302.48 mg/g. Pore structural analysis, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated the physical and chemical characteristics of EFBLAC. Equilibrium data were best described by the Langmuir isotherm, with a monolayer adsorption capacity of 402.06 mg/g, and the adsorption kinetics was well fitted to the pseudo-second-order equation. The findings revealed the potential to prepare high quality activated carbon from langsat empty fruit bunch waste by microwave irradiation.
  6. Foo KY, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9794-9.
    PMID: 21875789 DOI: 10.1016/j.biortech.2011.08.007
    Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.
  7. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;104:679-86.
    PMID: 22101073 DOI: 10.1016/j.biortech.2011.10.005
    This work explores the feasibility of orange peel, a citrus processing biomass as an alternative precursor for preparation of activated carbon (OPAC) via microwave assisted K(2)CO(3) activation. The operational parameters, chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were investigated. The virgin characteristics of OPAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurement. The optimum conditions resulted in OPAC with a monolayer adsorption capacity of 382.75 mg/g for methylene blue and carbon yield of 80.99%. The BET surface area, Langmuir surface area and total pore volume were identified to be 1104.45 m(2)/g, 1661.04 m(2)/g and 0.615 m(3)/g, respectively. Equilibrium data were simulated using the Langmuir, Freundlich, Dubinin-Radushkevich, Redlich-Peterson, and Toth isotherms, and kinetic data were fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models.
  8. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;103(1):398-404.
    PMID: 22050840 DOI: 10.1016/j.biortech.2011.09.116
    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.
  9. Foo KY, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9814-7.
    PMID: 21871796 DOI: 10.1016/j.biortech.2011.07.102
    Rice husk (RH), an abundant by-product of rice milling, was used for the preparation of activated carbon (RHAC) via KOH and K(2)CO(3) chemical activation. The activation process was performed at the microwave input power of 600 W for 7 min. RHACs were characterized by low temperature nitrogen adsorption/desorption, scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption behavior was examined using methylene blue as adsorbate. The K(2)CO(3)-activated sample showed higher yield and better pore structures and adsorption capacity development than the KOH-activated sample, with a BET surface area, total pore volume and monolayer adsorption capacity of 1165 m(2)/g, 0.78 cm(3)/g and 441.52 mg/g, respectively. The results revealed the feasibility of microwave heating for preparation of high surface area activated carbons from rice husks via K(2)CO(3) activation.
  10. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2010 Sep 15;159(2):130-43.
    PMID: 20673570 DOI: 10.1016/j.cis.2010.06.002
    Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.
  11. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2011 Feb 17;162(1-2):22-8.
    PMID: 21035101 DOI: 10.1016/j.cis.2010.09.003
    Over the past couple of years, the resurgence of placing an effective and sustainable amendment to combat against the auxiliary industrial entities, remains a highly contested agenda from a global point. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of zeolite composite, a prestigious advanced catalyst which formulates the enhancement of adsorption rate and hydrogen storage capability, has fore fronted to be a new growing branch in the scientific community. Confirming the assertion, this paper presents a state of art review of activated carbon/zeolite composite technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon/zeolite composite represents a potentially viable and powerful tool, leading to the plausible improvement of environmental preservation.
  12. Foo KY, Hameed BH
    J Hazard Mater, 2009 Dec 30;172(2-3):523-31.
    PMID: 19695771 DOI: 10.1016/j.jhazmat.2009.07.091
    Concern about environmental protection has increased over the years from a global viewpoint. To date, the infiltration of oil palm ash into the groundwater tables and aquifer systems which poses a potential risk and significant hazards towards the public health and ecosystems, remain an intricate challenge for the 21st century. With the revolution of biomass reutilization strategy, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of oil palm ash industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of oil palm ash in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy.
  13. Foo KY, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):552-9.
    PMID: 19501461 DOI: 10.1016/j.jhazmat.2009.05.057
    Stepping into the new globalizes and paradigm shifted era, a huge revolution has been undergone by the electrochemical industry. From a humble candidate of the superconductor resources, today electrosorption has demonstrated its wide variety of usefulness, almost in every part of the environmental conservation. With the renaissance of activated carbon (AC), there has been a steadily growing interest in this research field. The paper presents a state of art review of electrosorption technology, its background studies, fundamental chemistry and working principles. Moreover, recent development of the activated carbon assisted electrosorption process, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of electrosorption in the field of adsorption science represents a potentially viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
  14. Foo KY, Hameed BH
    J Hazard Mater, 2009 Nov 15;171(1-3):54-60.
    PMID: 19577363 DOI: 10.1016/j.jhazmat.2009.06.038
    Water scarcity and pollution rank equal to climate change as the most urgent environmental issue for the 21st century. To date, the percolation landfill leachate into the groundwater tables and aquifer systems which poses a potential risk and potential hazards towards the public health and ecosystems, remains an aesthetic concern and consideration abroad the nations. Arising from the steep enrichment of globalization and metropolitan growth, numerous mitigating approaches and imperative technologies have currently drastically been addressed and confronted. Confirming the assertion, this paper presents a state of art review of leachate treatment technologies, its fundamental background studies, and environmental implications. Moreover, the key advance of activated carbons adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons adsorption represents a potentially viable and powerful tool, leading to the superior improvement of environmental conservation.
  15. Foo KY, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):1-11.
    PMID: 19879688 DOI: 10.1016/j.jhazmat.2009.10.014
    Concern about environmental protection has increased over the years from a global viewpoint. To date, the percolation of pesticide waste into the groundwater tables and aquifer systems remains an aesthetic issue towards the public health and food chain interference. With the renaissance of activated carbon, there has been a consistent growing interest in this research field. Confirming the assertion, this paper presents a state of art review of pesticide agrochemical practice, its fundamental characteristics, background studies and environmental implications. Moreover, the key advance of activated carbon adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon adsorption represents a plausible and powerful circumstance, leading to the superior improvement of environmental preservation.
  16. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2009 Nov 30;152(1-2):39-47.
    PMID: 19836724 DOI: 10.1016/j.cis.2009.09.005
    Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
  17. Foo KY, Hameed BH
    Bioresour Technol, 2013 Feb;130:696-702.
    PMID: 23334029 DOI: 10.1016/j.biortech.2012.11.146
    In this work, preparation of granular activated carbon from oil palm biodiesel solid residue, oil palm shell (PSAC) by microwave assisted KOH activation has been attempted. The physical and chemical properties of PSAC were characterized using scanning electron microscopy, volumetric adsorption analyzer and elemental analysis. The adsorption behavior was examined by performing batch adsorption experiments using methylene blue as dye model compound. Equilibrium data were simulated using the Langmuir, Freundlich and Temkin isotherm models. Kinetic modeling was fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models, while the adsorption mechanism was determined using the intraparticle diffusion and Boyd equations. The result was satisfactory fitted to the Langmuir isotherm model with a monolayer adsorption capacity of 343.94mg/g at 30°C. The findings support the potential of oil palm shell for preparation of high surface area activated carbon by microwave assisted KOH activation.
  18. Foo KY, Chee HY
    Biomed Res Int, 2015;2015:427814.
    PMID: 26347881 DOI: 10.1155/2015/427814
    Flaviviruses are potentially human pathogens that cause major epidemics worldwide. Flavivirus interacts with host cell factors to form a favourable virus replication site. Cell cytoskeletons have been observed to have close contact with flaviviruses, which expands the understanding of cytoskeleton functions during virus replication, although many detailed mechanisms are still unclear. The interactions between the virus and host cytoskeletons such as actin filaments, microtubules, and intermediate filaments have provided insight into molecular alterations during the virus infection, such as viral entry, in-cell transport, scaffold assembly, and egress. This review article focuses on the utilization of cytoskeleton by Flavivirus and the respective functions during virus replication.
  19. Lee LK, Foo KY
    Clin Biochem, 2014 Jul;47(10-11):973-82.
    PMID: 24875852 DOI: 10.1016/j.clinbiochem.2014.05.053
    Infertility is a worldwide reproductive health problem which affects approximately 15% of couples, with male factor infertility dominating nearly 50% of the affected population. The nature of the phenomenon is underscored by a complex array of transcriptomic, proteomic and metabolic differences which interact in unknown ways. Many causes of male factor infertility are still defined as idiopathic, and most diagnosis tends to be more descriptive rather than specific. As such, the emergence of novel transcriptomic and metabolomic studies may hold the key to more accurately diagnose and treat male factor infertility. This paper provides the most recent evidence underlying the role of transcriptomic and metabolomic analysis in the management of male infertility. A summary of the current knowledge and new discovery of noninvasive, highly sensitive and specific biomarkers which allow the expansion of this area is outlined.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links