Displaying all 12 publications

Abstract:
Sort:
  1. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH
    PMID: 33455424 DOI: 10.1080/10408398.2021.1871589
    The application of protein-protein interaction (PPI) has been widely used in various industries, such as food, nutraceutical, and pharmaceutical. A deeper understanding of PPI is needed, and the molecular forces governing proteins and their interaction must be explained. The design of new structures with improved functional properties, e.g., solubility, emulsion, and gelation, has been fueled by the development of structural and colloidal building blocks. In this review, the molecular forces of protein structures are discussed, followed by the relationship between molecular force and structure, ways of a bind of proteins together in solution or at the interface, and functional properties. A more detailed look is thus taken at the relationship between the various influencing factors on molecular forces involved in PPI. These factors include protein properties, such as types, concentration, and mixing ratio, and solvent conditions, such as ionic strength and pH. This review also summarizes methods tha1t are capable of identifying molecular forces in protein and PPI, as well as characterizing protein structure.
  2. Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu'datt MH
    Food Chem, 2022 Feb 10;383:132386.
    PMID: 35176718 DOI: 10.1016/j.foodchem.2022.132386
    Due to its high nutritional value and increasing consumption trends, plant-based proteins were used in a variety of dietary products, either in their entirety or as partial substitutions. There is indeed a growing need to produce plant-based proteins as alternatives to dairy-based proteins that have good functional properties, high nutritional values, and high protein digestibility. Among the plant-based proteins, both lentil and quinoa proteins received a lot of attention in recent years as dairy-based protein alternatives. To ensure plant-based proteins a success in food applications, food industries and researchers need to have a comprehensive scientific understanding of these proteins. The demand for proteins is highly dependent on several factors, mainly functional properties, nutritional values, and protein digestibility. Fermentation and protein complexation are recognised to be suitable techniques in enhancing the functional properties, nutritional values, and protein digestibility of these plant-based proteins, making them potential alternatives for dairy-based proteins.
  3. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH
    J Food Sci, 2021 Dec;86(12):5282-5294.
    PMID: 34796499 DOI: 10.1111/1750-3841.15974
    Poor solubility is a substantial factor that restricts the production of high value-added lentil proteins (LPs). In this study, whey protein isolates (WPIs), which have high solubility and are used in various food industries, were mixed with LPs at pH 12 to create LP-WPI protein complexes with improved water solubility properties using pH-recycling approach (maintained at pH 12.0 for 60 min and then readjusting to pH 7.0). LP-WPI protein complexes produced in this study have gained high surface charge, increased in the solubilization of protein complexes to ≈92%, as well as improved resistance against protein aggregation. The ratio of LPs to WPIs has a significant effect on the generation of unique tertiary and secondary protein structures based on the protein-protein interaction (PPI) technique via pH-recycling. The protein interaction between LPs and WPIs resulted in alteration on the surface morphology of the produced protein complexes. This study showed that electrostatic interaction, hydrophobic force, and hydrogen bond appear as major molecular forces in this PPI. The efficacy of the pH-recycling method used in this research indicates that this approach could be a robust approach to enhance the functional properties of food proteins. PRACTICAL APPLICATION: The pH-recycling technique is a proven technique for protein complexation in creating novel protein complexes with improved functional properties. Even though lentils are a rich source of plant-based protein, its utilization by food industries is restricted due to the poor water solubility of lentil proteins (LPs). However, by using complexing lentil proteins with whey protein isolates (WPIs), that is, LP-WPI protein complex, was developed. The water solubility of LP-WPI protein complex was significantly higher than LPs, up to approximately 92%. In addition, this could improve the utilization of lentil seeds in food application as an alternative for animal-based proteins.
  4. Alrosan M, Tan TC, Koh WY, Easa AM, Gammoh S, Alu'datt MH
    Crit Rev Food Sci Nutr, 2023;63(25):7677-7691.
    PMID: 35266840 DOI: 10.1080/10408398.2022.2049200
    Demands for high nutritional value-added food products and plant-based proteins have increased over the last decade, in line with the growth of the human population and consumer health awareness. The quality of the plant-based proteins depends on their digestibility, amino acid content, and residues of non-nutritive compounds, such as phenolic compounds, anti-nutritional compounds, antioxidants, and saponins. The presence of these non-nutritive compounds could have detrimental effects on the quality of the proteins. One of the solutions to address these shortcomings of plant-based proteins is fermentation, whereby enzymes that present naturally in microorganisms used during fermentation are responsible for the cleavage of the bonds between proteins and non-nutritive compounds. This mechanism has pronounced effects on the non-nutritive compounds, resulting in the enhancement of protein digestibility and functional properties of plant-based proteins. We assert that the types of plant-based proteins and microorganisms used during fermentation must be carefully addressed to truly enhance the quality, functional properties, and health functionalities of plant-based proteins.Supplemental data for this article is available online at here. show.
  5. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH, Aleid GM, et al.
    Food Chem, 2023 Mar 15;404(Pt B):134614.
    PMID: 36444092 DOI: 10.1016/j.foodchem.2022.134614
    The utilisation of quinoa protein concentrates (QPCs) is limited due to their poor protein digestibility (78.54 %). In this study, QPCs (1 % w/v) were fermented in 5 % (v/v) water kefir grains (WKG) for 5 days at 25 °C. The protein quality of the fermented QPCs was enhanced, whereby the protein digestibility increased significantly (P 
  6. Al-Qaisi A, Alrosan M, Almajwal AM, Gammoh S, Alu'datt MH, Kubow S, et al.
    J Food Sci, 2024 Feb 05.
    PMID: 38317408 DOI: 10.1111/1750-3841.16946
    The utilization of pea proteins (PPs) is limited due to their relatively low protein digestibility (∼81%) compared to animal-based proteins, such as whey. The present investigation involved the fermentation of PPs at a concentration of 1% (w/v) using 5% (w/v) water kefir for 60 h at 25°C to improve the functional properties of PPs. The results showed a significant (p 
  7. Alrosan M, Madi Almajwal A, Al-Qaisi A, Gammoh S, H Alu'datt M, R Al Qudsi F, et al.
    Curr Res Struct Biol, 2024;7:100135.
    PMID: 38516624 DOI: 10.1016/j.crstbi.2024.100135
    Plant-based proteins are often associated with a range of health benefits. Most research primarily investigates pea and soy proteins, while lentil proteins received minimal attention. This study evaluates the effect of protein complexation (using the pH-shifting technique) coupled with trehalose conjugation on lentil and whey proteins. The protein structures after the modification were analysed using spectroscopic methods: Fourier-transform infrared, ultraviolet spectra, and fluorescence spectra. The amide group I, conformation protein, and tertiary structure of the trehalose-conjugated lentil-whey protein complexes (T-LWPs) showed significant changes (P < 0.05). Moreover, the surface properties (surface hydrophobicity and charges) of T-LWPs were significantly modified (P < 0.05), from 457 to 324 a.u and from 36 to -40 mV, respectively. Due to these modifications on the protein structures, the protein digestibility (80-86%) and water solubility (90-94.5%) of T-LWPs increased significantly (P 
  8. Alu'datt MH, Rababah T, Al-Ali S, Tranchant CC, Gammoh S, Alrosan M, et al.
    J Food Sci, 2024 Apr;89(4):1835-1864.
    PMID: 38407443 DOI: 10.1111/1750-3841.16970
    Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.
  9. Alu'datt MH, Khamayseh Y, Alhamad MN, Tranchant CC, Gammoh S, Rababah T, et al.
    Food Chem, 2022 Mar 30;373(Pt B):131531.
    PMID: 34823940 DOI: 10.1016/j.foodchem.2021.131531
    The nutrient composition of 50 commonly consumed Jordanian food dishes was determined to support the development of a novel nutrition management system designed to assist with dietary intake assessment and diet management. Composite dishes were selected by interviewing households located in the northern region of Jordan. For each dish, five different recipes were collected from experienced chefs and the typical recipe was formulated based on the average weights of ingredients and net weight of the dish. Proximate composition as well as vitamin and mineral contents were determined and related to ingredient composition and cooking conditions. The newly created food composition database was used to develop a user-centric nutrition management software tailored to reflect the characteristics of the Jordanian diet with representative items from this diet. This novel nutrition management system is customizable, enabling users to build daily meal plans in accordance with personalized dietary needs and goals.
  10. Gammoh S, Alu'datt MH, Alhamad MN, Tranchant CC, Rababah T, Al-U'datt D, et al.
    Molecules, 2023 Aug 11;28(16).
    PMID: 37630264 DOI: 10.3390/molecules28166012
    This research aimed to determine the biofunctional properties of wheat flour (WF) protein fractions and modifications to the antioxidant, anti-α-amylase and anti-angiotensin-I converting enzyme (ACE) activities induced by the action of digestive endopeptidases in vitro. A molecular characterization of the most abundant protein fractions, i.e., albumins, glutelins-1, glutelins-2 and prolamins, showed that low- and high-MW polypeptides rich in cysteine, glutamic acid and leucine were present in albumins and glutelins, whereas low-MW subunits with a high proportion of polar amino acids prevailed in prolamins. Prolamins exhibited the second-highest water holding capacity (54%) after WF (84%), while albumins provided superior foam stability (76%). Prolamins, glutenins-1 and globulins demonstrated the highest antioxidant activity (up to 95%, 68% and 59%, respectively) both before and after hydrolysis with pepsin (P-H) or trypsin-chymotrypsin (TC-H). Prolamins, globulins and WF strongly inhibited α-amylase (>90%) before and after TC-H, and before P-H (55-71%). Moreover, P-H significantly increased α-amylase inhibition by albumins from 53 to 74%. The fractions with strong ACE inhibitory activity (70-89%) included prolamins and globulins after TC-H or P-H, as well as globulins before TC-H and WF before P-H. This novel evidence indicates that WF protein fractions and their peptide-enriched P and TC hydrolysates are excellent sources of multifunctional bioactives with antioxidant, antihyperglycemic and antihypertensive potential.
  11. Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu'datt MH, Kubow S, et al.
    Food Chem, 2024 Jun 15;443:138574.
    PMID: 38309026 DOI: 10.1016/j.foodchem.2024.138574
    This study aimed to assess the technique of natural fermentation by applying water kefir to the casein protein. The diverse microorganisms and their enzymes found naturally in the water kefir can influence casein's characteristics. The fermented casein's protein quality (digestibility and secondary protein structure) and composition (total soluble solids and nutritive and non-nutritive substances) were investigated. Our findings revealed that the fermented casein's protein digestibility and total phenolic content increased from 82.46 to 88.60 % and 7.6 to 8.0 mg gallic acid equivalent/100 g, respectively. In addition, their surface charge and hydrophobicity changed from -30.06 to -34.93 mV and 286.9 to 213.7, respectively. Furthermore, the fermented casein's secondary protein components, α-helix (decreased from 13.66 to 8.21 %) and random coil (increased from 16.88 to 19.61 %), were also altered during the fermentation. Based on these findings, the water kefir fermentation approach could be an effective, practical, non-thermal approach for improving casein's protein quality and composition.
  12. Alrosan M, Madi Almajwal A, Al-Qaisi A, Gammoh S, Alu'datt MH, Al Qudsi FR, et al.
    Food Chem, 2024 Jul 30;447:138882.
    PMID: 38452537 DOI: 10.1016/j.foodchem.2024.138882
    The two limiting factors for lentil protein utilization are water solubility and digestibility. In this study, we utilized two non-thermal techniques: (1) protein complexation of lentil and casein proteins using the pH-shifting method and (2) protein conjugation with trehalose to produce trehalose-conjugated lentil-casein protein complexes (T-CPs) with enhanced water solubility and digestibility. The protein structure of the T-CPs was analyzed for secondary protein structure, conformation protein, and tertiary protein structure using Fourier-transform infrared, UV, and fluorescence spectroscopies, respectively. The surface hydrophobicity and surface charge of T-CPs solution at pH 7.0 changed significantly (P 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links