Displaying all 3 publications

Abstract:
Sort:
  1. Chia KS, Jam MNH, Gan Z, Ismail N
    J Food Sci Technol, 2020 Dec;57(12):4533-4540.
    PMID: 33087966 DOI: 10.1007/s13197-020-04492-5
    Exported fresh intact pineapples must fulfill the minimum internal quality requirement of 12 degree brix. Even though near-infrared (NIR) spectroscopic approaches are promising to non-destructively and rapidly assess the internal quality of intact pineapples, these approaches involve expensive and complex NIR spectroscopic instrumentation. Thus, this research evaluates the performance of a proposed pre-dispersive NIR light sensing approach in non-destructively classifying the Brix of pineapples using K-fold cross-validation, holdout validation, and sensitive analysis. First, the proposed pre-dispersive NIR sensing device that consisted of a light sensing element and five NIR light emitting diodes with peak wavelengths of 780, 850, 870, 910, and 940 nm, respectively, was developed. After that, the diffuse reflectance NIR light of intact pineapples was non-destructively acquired using the developed NIR sensing device before their Brix values were conventionally measured using a digital refractometer. Next, an artificial neural network (ANN) was trained and optimized to classify the Brix values of pineapples using the acquired NIR light. The results of the sensitivity analysis showed that either one wavelength that was near to the water absorbance or chlorophyll band was redundant in the classification. The performance of the trained ANN was tested using new pineapples with the optimal classification accuracy of 80.56%. This indicates that the proposed pre-dispersive NIR light sensing approach coupled with the ANN is promising to be an alternative to non-destructively classifying the internal quality of fruits.
  2. Abas A, Gan ZL, Ishak MH, Abdullah MZ, Khor SF
    PLoS One, 2016;11(7):e0159357.
    PMID: 27454872 DOI: 10.1371/journal.pone.0159357
    This paper studies the three dimensional (3D) simulation of fluid flows through the ball grid array (BGA) to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM) code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM) code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced.
  3. Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, et al.
    Biosensors (Basel), 2022 Oct 25;12(11).
    PMID: 36354431 DOI: 10.3390/bios12110922
    Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links