Displaying all 5 publications

Abstract:
Sort:
  1. Wan Ab Naim WN, Ganesan PB, Sun Z, Chee KH, Hashim SA, Lim E
    ScientificWorldJournal, 2014;2014:652520.
    PMID: 24672348 DOI: 10.1155/2014/652520
    Aortic dissection, characterized by separation of the layers of the aortic wall, poses a significant challenge for clinicians. While type A aortic dissection patients are normally managed using surgical treatment, optimal treatment strategy for type B aortic dissection remains controversial and requires further evaluation. Although aortic diameter measured by CT angiography has been clinically used as a guideline to predict dilation in aortic dissection, hemodynamic parameters (e.g., pressure and wall shear stress), geometrical factors, and composition of the aorta wall are known to substantially affect disease progression. Due to the limitations of cardiac imaging modalities, numerical simulations have been widely used for the prediction of disease progression and therapeutic outcomes, by providing detailed insights into the hemodynamics. This paper presents a comprehensive review of the existing numerical models developed to investigate reasons behind tear initiation and progression, as well as the effectiveness of various treatment strategies, particularly the stent graft treatment.
  2. Nair SS, Pinedo-Cuenca R, Stubbs T, Davis SJ, Ganesan PB, Hamad F
    Water Sci Technol, 2022 Nov;86(9):2138-2156.
    PMID: 36378171 DOI: 10.2166/wst.2022.328
    Microbubble (MB) technology constitutes a suite of promising low-cost technologies with potential applications in various sectors. Microbubbles (MBs) are tiny gas bubbles with diameters in the micrometre range of 10-100 μm. Along with their small size, they share special characteristics like slow buoyancy, large gas-liquid interfacial area and high mass-transfer efficiency. Initially, the review examines the key dissimilarities among the different types of microbubble generators (MBG) towards economic large-scale production of MBs. The applications of MBs to explore their effectiveness at different stages of wastewater treatment extending from aeration, separation/ flotation, ozonation, disinfection and other processes are investigated. A summary of the recent advances of MBs in real and synthetic wastewater treatment, existing research gaps, and limitations in upscaling of the technology, conclusion and future recommendations is detailed. A critical analysis of the energetics and treatment cost of combined approaches of MB technology with other advanced oxidation processes (AOPs) is carried out highlighting the potential applicability of hybrid technology in large-scale wastewater treatment.
  3. Hossain MA, Ganesan PB, Sandaran SC, Rozali SB, Krishnasamy S
    Environ Sci Pollut Res Int, 2017 Dec;24(34):26521-26533.
    PMID: 28948458 DOI: 10.1007/s11356-017-0241-6
    Microwave pyrolysis of oil palm fiber (OPF) with three types of Na-based catalysts was experimentally investigated to produce biochar. Sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium carbonate (Na2CO3) with purity 99.9% were selected for this investigation. Microwave muffle reactor (Model: HAMiab-C1500) with a microwave power controller including a microwave generator was used to perform the microwave pyrolysis. OPF particles were used after removing foreign materials, impurities, and dust. Microwave power ranges from 400 to 900 W, temperature ranges from 450 to 700 °C, and N2 flow rates ranges from 200 to -1200 cm3/min were used along with all three Na-based catalysts for this investigation. Lower microwave power, temperature, and N2 flow rate have been found favorable for higher yield of biochar. NaOH is to be found as the more suitable catalyst than NaCl and Na2CO3 to produce biochar. A maximum biochar yield (51.42 wt%) has been found by using the catalysts NaOH at N2 flow rate of 200 cm3/min. One sample of the biochar (maximum yield without catalysts) was selected for further characterization via thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), and ultimate and proximate analysis. SEM and BET surface area analysis showed the presence of some pores in the biochar. High percentage of carbon (60.24 wt%) was also recorded in the sample biochar. The pores and high percentage of carbon of biochar have significant impact on soil fertilization by increasing the carbon sequestration in the soil. It assists to slow down the decomposition rate of nutrients from soil and therefore enhances the soil quality.
  4. Wan Ab Naim WN, Ganesan PB, Sun Z, Lei J, Jansen S, Hashim SA, et al.
    Int J Numer Method Biomed Eng, 2018 05;34(5):e2961.
    PMID: 29331052 DOI: 10.1002/cnm.2961
    Endovascular stent graft repair has become a common treatment for complicated Stanford type B aortic dissection to restore true lumen flow and induce false lumen thrombosis. Using computational fluid dynamics, this study reports the differences in flow patterns and wall shear stress distribution in complicated Stanford type B aortic dissection patients after endovascular stent graft repair. Five patients were included in this study: 2 have more than 80% false lumen thrombosis (group 1), while 3 others had less than 80% false lumen thrombosis (group 2) within 1 year following endovascular repair. Group 1 patients had concentrated re-entry tears around the abdominal branches only, while group 2 patients had re-entry tears that spread along the dissection line. Blood flow inside the false lumen which affected thrombus formation increased with the number of re-entry tears and when only small amounts of blood that entered the false lumen exited through the branches. In those cases where dissection extended below the abdominal branches (group 2), patients with fewer re-entry tears and longer distance between the tears had low wall shear stress contributing to thrombosis. This work provides an insight into predicting the development of complete or incomplete false lumen thrombosis and has implications for patient selection for treatment.
  5. Wan Ab Naim WN, Sun Z, Liew YM, Chan BT, Jansen S, Lei J, et al.
    Quant Imaging Med Surg, 2021 May;11(5):1723-1736.
    PMID: 33936960 DOI: 10.21037/qims-20-814
    Background: The study aims to analyze the correlation between the maximal diameter (both axial and orthogonal) and volume changes in the true (TL) and false lumens (FL) after stent-grafting for Stanford type B aortic dissection.

    Method: Computed tomography angiography was performed on 13 type B aortic dissection patients before and after procedure, and at 6 and 12 months follow-up. The lumens were divided into three regions: the stented area (Region 1), distal to the stent graft to the celiac artery (Region 2), and between the celiac artery and the iliac bifurcation (Region 3). Changes in aortic morphology were quantified by the increase or decrease of diametric and volumetric percentages from baseline measurements.

    Results: At Region 1, the TL diameter and volume increased (pre-treatment: volume =51.4±41.9 mL, maximal axial diameter =22.4±6.8 mm, maximal orthogonal diameter =21.6±7.2 mm; follow-up: volume =130.7±69.2 mL, maximal axial diameter =40.1±8.1 mm, maximal orthogonal diameter =31.9+2.6 mm, P<0.05 for all comparisons), while FL decreased (pre-treatment: volume =129.6±150.5 mL; maximal axial diameter =43.0±15.8 mm; maximal orthogonal diameter =28.3±12.6 mm; follow-up: volume =66.6±95.0 mL, maximal axial diameter =24.5±19.9 mm, maximal orthogonal diameter =16.9±13.7, P<0.05 for all comparisons). Due to the uniformity in size throughout the vessel, high concordance was observed between diametric and volumetric measurements in the stented region with 93% and 92% between maximal axial diameter and volume for the true/false lumens, and 90% and 92% between maximal orthogonal diameter and volume for the true/false lumens. Large discrepancies were observed between the different measurement methods at regions distal to the stent graft, with up to 46% differences between maximal orthogonal diameter and volume.

    Conclusions: Volume measurement was shown to be a much more sensitive indicator in identifying lumen expansion/shrinkage at the distal stented region.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links