Displaying all 3 publications

Abstract:
Sort:
  1. Kant S, Sreejeth M, Singh M, Devanshu A, Alotaibi MA, Malik H, et al.
    PLoS One, 2025;20(3):e0312946.
    PMID: 40153451 DOI: 10.1371/journal.pone.0312946
    In order to ensure optimal performance of permanent magnet synchronous motors (PMSMs) across many technical applications, it is imperative to minimize torque fluctuations and reduce total harmonic distortion (THD) in stator currents. Hence, this study proposes the utilization of an adaptive flux estimator (AFE) in conjunction with an Intelligent Hybrid Controller (IHC) to mitigate the ripples and total harmonic distortion (THD). The IHC system is constructed by integrating PI and fuzzy logic controllers (FLC) in a cascade configuration, alongside a new switching unit that facilitates automatic switching between the two controllers during various operations of the PMSM. AFE estimates accurate flux which is required to achieve ripple free high dynamic performance of the PMSM drive by using a limiter to fix the flux at reference flux value of the drive. The proposed controller with AFE has achieved its originality through the refinement of membership functions located at the center of the universe of discourse (UOD) and the enhancement of the switching function. These improvements have resulted in increased sensitivity in the proximity to the reference speed. The Fuzzy Logic Controller (FLC) demonstrates superior performance when operating in a transient state, whereas the Proportional-Integral (PI) controller of the proposed system exhibits satisfactory performance under steady-state situations. The efficacy of AFE with IHC is substantiated by the simulation and experimental analysis reported in this study. A significant reduction in both total harmonics distortion (THD) and torque ripples are found.
  2. Khan MZU, Uddin E, Akbar B, Akram N, Naqvi AA, Sajid M, et al.
    Nanomaterials (Basel), 2020 Sep 09;10(9).
    PMID: 32916991 DOI: 10.3390/nano10091796
    A new micro heat exchanger was analyzed using numerical formulation of conjugate heat transfer for single-phase fluid flow across copper microchannels. The flow across bent channels harnesses asymmetric laminar flow and dean vortices phenomena for heat transfer enhancement. The single-channel analysis was performed to select the bent channel aspect ratio by varying width and height between 35-300 μm for Reynolds number and base temperature magnitude range of 100-1000 and 320-370 K, respectively. The bent channel results demonstrate dean vortices phenomenon at the bend for Reynolds number of 500 and above. Thermal performance factor analysis shows an increase of 18% in comparison to straight channels of 200 μm width and height. Alumina nanoparticles at 1% and 3% concentration enhance the Nusselt number by an average of 10.4% and 23.7%, respectively, whereas zirconia enhances Nusselt number by 16% and 33.9% for same concentrations. On the other hand, thermal performance factor analysis shows a significant increase in pressure drop at high Reynolds number with 3% particle concentration. Using zirconia for nanofluid, Nusselt number of the bent multi-channel model is improved by an average of 18% for a 3% particle concentration as compared to bent channel with deionized water.
  3. Butt AH, Akbar B, Aslam J, Akram N, Soudagar MEM, García Márquez FP, et al.
    Sensors (Basel), 2020 Oct 21;20(20).
    PMID: 33096774 DOI: 10.3390/s20205954
    Vertical axis wind turbines (VAWT) are a source of renewable energy and are used for both industrial and domestic purposes. The study of noise characteristics of a VAWT is an important performance parameter for the turbine. This study focuses on the development of a linear microphone array and measuring acoustic signals on a cambered five-bladed 45 W VAWT in an anechoic chamber at different tip speed ratios. The sound pressure level spectrum of VAWT shows that tonal noises such as blade passing frequencies dominate at lower frequencies whereas broadband noise corresponds to all audible ranges of frequencies. This study shows that the major portion of noise from the source is dominated by aerodynamic noises generated due to vortex generation and trailing edge serrations. The research also predicts that dynamic stall is evident in the lower Tip speed ratio (TSR) region making smaller TSR values unsuitable for a quiet VAWT. This paper compares the results of linear aeroacoustic array with a 128-MEMS acoustic camera with higher resolution. The study depicts a 3 dB margin between two systems at lower TSR values. The research approves the usage of the 8 mic linear array for small radius rotary machinery considering the results comparison with a NORSONIC camera and its resolution. These observations serve as a basis for noise reduction and blade optimization techniques.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links