Displaying all 5 publications

Abstract:
Sort:
  1. Jemat A, Ghazali MJ, Razali M, Otsuka Y
    Biomed Res Int, 2015;2015:791725.
    PMID: 26436097 DOI: 10.1155/2015/791725
    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants.
  2. Sulaiman NH, Ghazali MJ, Majlis BY, Yunas J, Razali M
    Biomed Mater Eng, 2015;26 Suppl 1:S103-10.
    PMID: 26405858 DOI: 10.3233/BME-151295
    The calcium ferrite nano-particles (CaFe2O4 NPs) were synthesized using a sol-gel method for targeted drug delivery application. The proposed nano-particles were initially prepared by mixing calcium and iron nitrates that were added with citric acid in order to prevent agglomeration and subsequently calcined at a temperature of 550°C to obtain small particle size. The prepared nanoparticles were characterized by using an XRD (X-ray diffraction), which revealed the configuration of orthorhombic structures of the CaFe2O4 nano-particles. A crystallite size of ~13.59 nm was obtained using a Scherer's formula. Magnetic analysis using a VSM (Vibrating Sample Magnetometer analysis), revealed that the synthesized particles exhibited super-paramagnetic behavior having magnetization saturation of approximately 88.3emu/g. Detailed observation via the scanning electron microscopy (SEM) showed the calcium ferrite nano-particles were spherical in shape.
  3. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH
    J Dent, 2017 Jan;56:121-132.
    PMID: 27916635 DOI: 10.1016/j.jdent.2016.11.012
    OBJECTIVES: This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied.

    METHODS: Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated.

    RESULTS: NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%.

    CONCLUSION: Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane.

    CLINICAL SIGNIFICANCE: Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity.

  4. Ghazali MJ, Ren X, Rajabi A, Zamri WFHW, Mohd Mustafah N, Ni J
    Polymers (Basel), 2021 Jul 09;13(14).
    PMID: 34301018 DOI: 10.3390/polym13142261
    With the development of societies, diabetic foot ulcers have become one of the most common diseases requiring lower extremity amputation. The early treatment and prevention of diabetic foot ulcers can considerably reduce the possibility of amputation. Using footwear to redistribute and relieve plantar pressure is one of the important measures for the treatment and prevention of diabetic foot ulcers. Thus, the evaluation and prediction of the distribution of plantar pressure play an important role in designing footwears. Herein, the finite element method was used to study plantar pressure under two kinds of foot models, namely, the skeletal structure foot model and the whole foot model, to explore the influence of human bones on the pressure of the soles of the feet and obtain accurate foot pressure. Simulation results showed that under the two models, the plantar pressure and the pressure from the footwear with ethylene vinyl acetate were all reduced. The total deformation demonstrated a slight increase. These stresses are very useful as they enable the design of suitable orthotic footwear that reduces the amount of stress in individuals with diabetic foot ulcers.
  5. Soh EZF, Htwe O, Naicker AS, Nasirabadi AR, Ghazali MJ, Mohd Mustafah N, et al.
    J Tissue Viability, 2020 May;29(2):104-109.
    PMID: 32014382 DOI: 10.1016/j.jtv.2020.01.005
    BACKGROUND: Diabetic foot ulcer is commonly seen in people with diabetes mellitus. Inadequate plantar pressure offloading has been identified as a contributing factor to development of diabetic foot ulcers. Various pressure off-loading footwear are widely available in the market but poor compliance has been reported especially for indoor usage. StepEase™ diabetic socks have been designed using Ethylene Vinyl Acetate (EVA) microspheres for better redistribution of plantar pressure. The objective of this study was to determine the efficacy of StepEase™ in redistributing the foot plantar pressure and to assess patients' satisfaction on the usage of the socks.

    METHODS: This was a prospective non randomized clinical trial conducted on 31 patients with diabetes mellitus with high risk foot (King's classification stage II) over a 12 weeks period. Dynamic foot plantar pressure reading was recorded at day 0, 6 weeks and 12 weeks intervals, both barefoot and with StepEase™, using Novel Pedar-X system (Novel GmbH, Munich, Germany). Patients' satisfaction and usage practice were assessed by a questionnaire.

    RESULTS: The mean age of subjects was 57.9 years with mean body mass index (BMI) of 26 kg/m2. The mean duration of diagnosis with diabetes mellitus was 10.2 years. The mean peak plantar pressure was found to be highest at the right forefoot and left heel region, 267.6 kPa (SD113.5 kPa) and 266.3 kPa (SD 94.6 kPa) respectively. There was a statistically significant reduction of mean peak pressure (P 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links