Displaying all 6 publications

Abstract:
Sort:
  1. Goudanavar, Prakash, Jambanna M. V, Acharya, Ankit, Fattepur, Santosh, Nilugal, Kiran
    MyJurnal
    This work deals with the formulation of ocular niosomal in-situ gel of Ketorolac tromethamine for improved bioavailability. Ketorolac tromethamine loaded niosomes were prepared by thin film hydration method using cholesterol and different surfactants. Niosomal in-situ gel was prepared using HPMC (K15M) and Carbopol (934P) to maintain the drug localization for extended period of time. The niosomes formulations were characterized for vesicle size, entrapment efficiency and in-vitro release and niosomal in-situ gel were evaluated for visual appearance, clarity, pH measurement, drug content measurement, rheological study, and stability testing. Niosomal vesicles were discrete and spherical in shape, 2.09µm-5.59µm in size, 19.32%-53.06% entrapment efficiency and showed sustained release behavior. The formulation F10 shows the highest entrapment efficiency with 53.06%. Drug loaded niosomal in-situ gel sustained the drug release (71.74%-86.20%) for 24 hours. The mechanism of drug release was non-Fickian diffusion controlled first order kinetics for niosomal in-situ gel formulation. Stability study indicated that the prepared niosomal in- situ gel remained more stable at refrigeration (4-8˚C) and room temperature (25±2˚C) as compared to (45±2˚C) in humidity control oven for 3 months. FT-IR and DSC studies revealed the integrity of the drug in the formulations. Thus, the present study conclusively demonstrates the feasibility of effectively formulating Ketorolac tromethamine niosomal in situ gels which are capable of releasing the drug for extended periods of time.
  2. Asha BR, Goudanavar P, Koteswara Rao GSN, Gandla K, Raghavendra Naveen N, Majeed S, et al.
    Saudi Pharm J, 2023 Sep;31(9):101711.
    PMID: 37564747 DOI: 10.1016/j.jsps.2023.101711
    Inhaling drugs, on the other hand, is limited mainly by the natural mechanisms of the respiratory system, which push drug particles out of the lungs or make them inefficient once they are there. Because of this, many ways have been found to work around the problems with drug transport through the lungs. Researchers have made polymeric microparticles (MP) and nanoparticles as a possible way to get drugs into the lungs. They showed that the drug could be trapped in large amounts and retained in the lungs for a long time, with as little contact as possible with the bloodstream. MP were formulated in this study to get dexamethasone (DMC) into the pulmonary area. The Box-Behnken design optimized microspheres preparation to meet the pulmonary delivery prerequisites. Optimized formulation was figured out based on the desirability approach. The mass median aerodynamic diameter (MMAD) of the optimized formula (O-DMC-MP) was 8.46 ± 1.45 µm, and the fine particle fraction (FPF) was 77.69 ± 1.26%. This showed that it made suitable drug delivery system, which could make it possible for MP to settle deeply in the lung space after being breathed in. With the first burst of drug release, it was seen that drug release could last up to 16 h. Also, there was no clear sign that the optimized formulation was toxic to the alveoli basal epithelial cells in the lungs, as supported by cytotoxic studies in HUVEC, A549, and H1299 cell lines. Most importantly, loading DMC inside MP cuts the amount of drug into the bloodstream compared to plain DMC, as evident from biodistribution studies. Stability tests have shown that the product can stay the same over time at both the storage conditions. Using chitosan DMC-MP can be a better therapeutic formulation to treat acute respiratory distress syndrome (ARDS).
  3. Nagaraja S, Ahmed SS, D R B, Goudanavar P, M RK, Fattepur S, et al.
    Molecules, 2022 Jul 06;27(14).
    PMID: 35889209 DOI: 10.3390/molecules27144336
    Diabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of Psidium guajava (PGE) for investigating its antidiabetic activity. Psidium guajava silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters. The in vivo study was conducted using PGE and PGAg NPs in Streptozotocin (STZ)-induced diabetic rats to assess their antidiabetic properties. STZ of 55 mg/kg was injected to induce diabetes. The PGE, PGAg NPs at a dose of 200 and 400 mg/kg and standard drug Metformin (100 mg/kg) were administered daily to diabetic rats for 21 days through the oral route. Blood glucose level, body weight changes, lipid profiles, and histopathology of the rats' liver and pancreas were examined. In the diabetic rats, PGE and PGAg NPs produced a drastic decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. The histopathological findings revealed the improvements in pancreas and liver cells due to the repercussion of PGE and PGAg NPs. A compelling effect was observed in all doses of PGE and PGAg NPs; however, PGAg NPs exhibited a more promising result. Thus, from the results, it is concluded that the synthesized PGAg NPs has potent antidiabetic activity due to its enhanced surface area and smaller particle size of nanoparticles.
  4. Monirul Islam M, Hemmanahalli Ramesh V, Durga Bhavani P, Goudanavar PS, Naveen NR, Ramesh B, et al.
    Drug Deliv, 2022 Dec;29(1):3370-3383.
    PMID: 36404771 DOI: 10.1080/10717544.2022.2144963
    Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.
  5. Basavarajappa GM, Priyanka KM, Goudanavar P, Narasimha LG, Naveen NR, Gowthami B, et al.
    Des Monomers Polym, 2023;26(1):106-116.
    PMID: 37008384 DOI: 10.1080/15685551.2023.2194176
    Polymers are a fundamental part of numerous industries and can be conjugated with many other materials and components to have a vast array of products. Biomaterials have been extensively studied for their application in pharmaceutical formulation development, tissue engineering, and biomedical areas. However, the native form of many polymers has limitations concerning microbial contamination, susceptibility, solubility, and stability. Chemical or physical modifications can overcome these limitations by tailoring the properties of polymers to meet several requirements. The polymer modifications are interdisciplinary, cutting across conventional materials, physics, biology, chemistry, medicine, and engineering limitations. Microwave irradiation has become a well-established technique for a few decades to drive and promote chemical modification reactions. This technique allows ease of temperature and power control to perform the synthesis protocols efficiently. Additionally, microwave irradiation contributes to green and sustainable chemistry. In this contribution, microwave-assisted polymer modifications were described with a special focus on their application in developing several novel dosage forms.
  6. Sreeharsha N, Prasanthi S, Mahalakshmi SVVNS, Goudanavar PS, Naveen NR, Gowthami B, et al.
    Molecules, 2022 Nov 16;27(22).
    PMID: 36432014 DOI: 10.3390/molecules27227914
    A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.414, +1, 0, -1, and -1.414). According to the Design Expert software's predictions, 13 runs were created and evaluated for the chosen responses. The formulation prepared with an agitation speed of 1260 RPM and a vacuum pressure of 77.53 mbar can meet the requirements of the ideal formulation in order to achieve 142.56 nm of PS and 75.18% EE, according to the level of desirability (D = 0.959). Folic acid was conjugated to Pluronic F127 to create folate receptor-targeted NC. The drug release profile of the nano-crystals in vitro demonstrated sustained release over an extended period. Folate receptor (FR)-targeted NC (O-PT-NC-Folate) has also been prepared by conjugating folic acid to Pluronic F127. MTT test is used to validate the targeting efficacy on the FR-positive human oral cancer cell line (KB). At pharmacologically relevant concentrations, the PT nano-crystal formulation did not cause hemolysis. Compared to non-targeted NC of PT, the O-PT-NC-Folate showed a comparable but more sustained anti-cancer effect, according to an in vivo anti-tumor investigation in NCI/ADR-RES cell lines. The remarkable anti-tumor effectiveness, minimal toxicity, and simplicity of scale-up manufacturing of the NC formulations indicate their potential for clinical development. Other hydrophobic medications that are formulated into nano-systems for improved therapy may benefit from the formulation approach.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links