Displaying all 7 publications

Abstract:
Sort:
  1. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
  2. Ikram M, Inayat T, Haider A, Ul-Hamid A, Haider J, Nabgan W, et al.
    Nanoscale Res Lett, 2021 Apr 07;16(1):56.
    PMID: 33825981 DOI: 10.1186/s11671-021-03516-z
    Various concentrations (0.01, 0.03 and 0.05 wt ratios) of graphene oxide (GO) nanosheets were doped into magnesium oxide (MgO) nanostructures using chemical precipitation technique. The objective was to study the effect of GO dopant concentrations on the catalytic and antibacterial behavior of fixed amount of MgO. XRD technique revealed cubic phase of MgO, while its crystalline nature was confirmed through SAED profiles. Functional groups presence and Mg-O (443 cm-1) in fingerprint region was evident with FTIR spectroscopy. Optical properties were recorded via UV-visible spectroscopy with redshift pointing to a decrease in band gap energy from 5.0 to 4.8 eV upon doping. Electron-hole recombination behavior was examined through photoluminescence (PL) spectroscopy. Raman spectra exhibited D band (1338 cm-1) and G band (1598 cm-1) evident to GO doping. Formation of nanostructure with cubic and hexagon morphology was confirmed with TEM, whereas interlayer average d-spacing of 0.23 nm was assessed using HR-TEM. Dopants existence and evaluation of elemental constitution Mg, O were corroborated using EDS technique. Catalytic activity against methyl blue ciprofloxacin (MBCF) was significantly reduced (45%) for higher GO dopant concentration (0.05), whereas bactericidal activity of MgO against E. coli was improved significantly (4.85 mm inhibition zone) upon doping with higher concentration (0.05) of GO, owing to the formation of nanorods.
  3. Ikram M, Mahmood A, Haider A, Naz S, Ul-Hamid A, Nabgan W, et al.
    Int J Biol Macromol, 2021 Aug 31;185:153-164.
    PMID: 34157328 DOI: 10.1016/j.ijbiomac.2021.06.101
    Various concentrations of Mg into fixed amount of cellulose nanocrystals (CNC)-doped ZnO were synthesized using facile chemical precipitation. The aim of present study is to remove dye degradation of methylene blue (MB) and bactericidal behavior with synthesized product. Phase constitution, functional group analysis, optical behavior, elemental composition, morphology and microstructure were examined using XRD, FTIR, UV-Vis spectrophotometer, EDS and HR-TEM. Highly efficient photocatalytic performance was observed in basic medium (98%) relative to neutral (65%), and acidic (83%) was observed upon Mg and CNC co-doping. Significant bactericidal activity of doped ZnO nanoparticles depicted inhibition zones for G -ve and +ve bacteria ranging (2.20 - 4.25 mm) and (5.80-7.25 mm) for E. coli and (1.05 - 2.75 mm) and (2.80 - 4.75 mm) for S. aureus at low and high doses, respectively. Overall, doped nanostructures showed significant (P 
  4. Shaheen S, Iqbal A, Ikram M, Ul-Ain K, Naz S, Ul-Hamid A, et al.
    ACS Omega, 2021 Sep 28;6(38):24866-24878.
    PMID: 34604668 DOI: 10.1021/acsomega.1c03723
    Graphene oxide (GO)-doped MnO2 nanorods loaded with 2, 4, and 6% GO were synthesized via the chemical precipitation route at room temperature. The aim of this work was to determine the catalytic and bactericidal activities of prepared nanocomposites. Structural, optical, and morphological properties as well as elemental composition of samples were investigated with advanced techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible (vis) spectroscopy, photoluminescence (PL), energy-dispersive spectrometry (EDS), and high-resolution transmission electron microscopy (HR-TEM). XRD measurements confirmed the monoclinic structure of MnO2. Vibrational mode and rotational mode of functional groups (O-H, C=C, C-O, and Mn-O) were evaluated using FTIR results. Band gap energy and blueshift in the absorption spectra of MnO2 and GO-doped MnO2 were identified with UV-vis spectroscopy. Emission spectra were attained using PL spectroscopy, whereas elemental composition of prepared materials was recorded with scanning electron microscopy (SEM)-EDS. Moreover, HR-TEM micrographs of doped and undoped MnO2 revealed elongated nanorod-like structure. Efficient degradation of methylene blue enhanced the catalytic activity in the presence of a reducing agent (NaBH4); this was attributed to the implantation of GO on MnO2 nanorods. Furthermore, substantial inhibition areas were measured for Escherichia coli (EC) ranging 2.10-2.85 mm and 2.50-3.15 mm at decreased and increased levels for doped MnO2 nanorods and 3.05-4.25 mm and 4.20-5.15 mm for both attentions against SA, respectively. In silico molecular docking studies suggested the inhibition of FabH and DNA gyrase of E. coli and Staphylococcus aureus as a possible mechanism behind the bactericidal activity of MnO2 and MnO2-doped GO nanoparticles (NPs).
  5. Tawfik A, Bakr MH, Nasr M, Haider J, Mesfer MKA, Lim H, et al.
    Chemosphere, 2022 Feb;289:133166.
    PMID: 34875288 DOI: 10.1016/j.chemosphere.2021.133166
    The sustainable application of an up-flow anaerobic baffled reactor (UABR) to treat real paper and cardboard industrial effluent (PCIE) containing bronopol (2-bromo-2-nitropropan-1, 3-diol) was investigated. At a hydraulic retention time (HRT) of 11.7 h and a bronopol concentration of 7.0 mg L-1, the removal efficiencies of total chemical oxygen demand (CODtotal), CODsoluble, CODparticulate, total suspended solids (TSS), volatile suspended solids (VSS), carbohydrates, and proteins were 55.3 ± 5.2%, 26.8 ± 2.3%, 94.4 ± 4.6%, 89.4 ± 2.6%, 84.5 ± 3.2%, 72.1 ± 1.8%, and 22.4 ± 1.8%, respectively. The conversion of complex organics (e.g., carbohydrates and proteins) into bio-methane (CH4) was assisted via enzyme activities of, in U (100 mL)-1, α-amylase (224-270), α-xylanase (171-188), carboxymethyl cellulase (CM-cellulase) (146-187), polygalacturonase (56-126), and protease (67,000-75300). The acidogenic condition was dominant at a short HRT of 2.9 h, where methane yield dropped by 32.5%. Under this condition, the growth of methanogenic bacteria could be inhibited by volatile fatty acids (VFA) accumulation. The analysis of Fourier-transform infrared (FTIR) spectra detected peaks relevant to methylene and nitro groups in the sludge samples, suggesting that entrapment/adsorption by the sludge bed could be a major mechanism for removing bronopol. The economic feasibility of UABR, as proposed to receive 100 m3 d-1 of PCIE, showed a payback period (profits from environmental benefits, biogas recovery, and carbon credit) of 7.6 yr. The study outcomes showed a high connection to the environmental-, economic-, and social-related sustainable development goals (SDGs).
  6. Ikram M, Abid N, Haider A, Ul-Hamid A, Haider J, Shahzadi A, et al.
    Nanoscale Adv, 2022 Feb 01;4(3):926-942.
    PMID: 36131827 DOI: 10.1039/d1na00802a
    In this study, different concentrations (0, 0.02, 0.04, and 0.06 wt%) of Mo doped onto La2O3 nanostructures were synthesized using a one-pot co-precipitation process. The aim was to study the ability of Mo-doped La2O3 samples to degrade toxic methylene blue dye in different pH media. The bactericidal potential of synthesized samples was also investigated. The structural properties of prepared samples were examined by XRD. The observed XRD spectrum of La2O3 showed a cubic and hexagonal structure, while no change was recorded in Mo-doped La2O3 samples. Doping with Mo improved the crystallinity of the samples. UV-Vis spectrophotometry and density functional theory calculations were used to assess the optical characteristics of Mo-La2O3. The band gap energy was reduced while the absorption spectra showed prominent peaks due to Mo doping. The HR-TEM results revealed the rod-like morphology of La2O3. The rod-like network appeared to become dense upon doping. A significant degradation of MB was confirmed with Mo; furthermore, the bactericidal activities against S. aureus and E. coli were measured as 5.05 mm and 5.45 mm inhibition zones, respectively, after doping with a high concentration (6%) of Mo.
  7. Ikram M, Bari MA, Bilal M, Jamal F, Nabgan W, Haider J, et al.
    Biomater Adv, 2023 Feb;145:213234.
    PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234
    Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links