Cashew (Anacardium occidentale L.) leaf is traditionally used to treat skin infections. Although many flavonols have been identified from its leaf extract, their inhibitory effects on skin pathogens are not yet determined. The aims of this study were to determine the antimicrobial (against skin pathogenic microbes) and antioxidant activities of four flavonol glycosides from the crude extract and three flavonol aglycones from the hydrolyzed extract. The hydrolyzed extract was found to show higher activities than the crude extract. Myricetin showed the highest activity against all the tested bacteria and yeast with the lowest Minimum Inhibition Concentration (MIC) of 7.81 μg/mL on Corynebacterium minutissimum ATCC23348. Myricetin also exhibited good primary antioxidant activities with the effective concentration with 50% of activity (EC50) values ranged between 2.23 μg/mL and 6.40 μg/mL. The highest secondary antioxidant activity was indicated by myricetin-3-O-rhamnoside. Thus, myricetin can be considered as a bioactive compound of the hydrolyzed extract.
The structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one (C19H13BrO) crystallized in the triclinic system of P-1 space group. The unit cell dimensions are: a=5.8944 (9)Å, b=7.8190 (12)Å, c=16.320 (2)Å, α=102.4364 (19)°, β=95.943 (2)°, γ=96.274 (2)° and Z=2. The physical properties of this compound was determined by the spectroscopic methods (FTIR and (1)H and (13)C NMR). Quantum chemical investigations have been employed to investigate the structural and spectral properties. The molecular structure, vibrational assignments, (1)H and (13)C NMR chemical shift values, non-linear optical (NLO) effect, HOMO-LUMO analysis and natural bonding orbital (NBO) analysis were calculated using HF and DFT/B3LYP methods with 6-311++G(d,p) basis set in the ground state. The results show that the theoretical calculation of the geometrical parameters, vibrational frequencies and chemical shifts are comparable with the experimental data. The crystal structure is influenced and stabilized by weak C-H⋯π interactions connecting the molecules into infinite supramolecular one dimensional ladder-like arrangement. Additionally, this compound is evaluated for their antibacterial activities against gram positive and gram negative strains using a micro dilution procedure and shows activities against a panel of microorganisms.
A series of five new 2-(1-benzofuran-2-yl)-2-oxoethyl 4-(un/substituted)benzoates 4(a-e), with the general formula of C₈H₅O(C=O)CH₂O(C=O)C₆H₄X, X = H, Cl, CH₃, OCH₃ or NO₂, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a-e) were characterized by FTIR, ¹H-, (13)C- and ¹H-(13)C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC) value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34%) in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 4d (31.01% ± 4.35%) in ferric reducing antioxidant power (FRAP) assay and 4a (27.11% ± 1.06%) in metal chelating (MC) activity.