Displaying all 6 publications

Abstract:
Sort:
  1. Mohd Nazri Idris, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Sodium silicate was used to synthesize silica fine particles at room temperature using non-ionic surfactant of triethanolamine (TEA), dissolution salt and precipitating agent. The experiments were conducted by different composition of precursor material, nonionic surfactant and dissolution salt concentrations through the sol-gel process. Various particle sizes in the range 100-300nm were synthesized. The particle size of silica powders were analyzed via Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Analysis (EDAX), X-Ray Fluorescence (XRF), and Fourier Transformation Infrared (FTIR). The result has demonstrated that the particle size can be controlled by changing the ratio of non-ionic surfactant and dissolution salt or the sodium silicate concentration.
  2. Ku Marsilla Ku Ishak, Zulkifli Ahmad, Hazizan Md Akil
    MyJurnal
    Chitosan was chemically modified with bulky structure, cis-5-norbornene-2, 3-dicarboxylic anhydride and the characteristic of this modified chitosan was studied. The resulting material was analyzed by FTIR, TGA, DSC, XRD and SEM to study the effect of N-acylation to the polysaccharide structure. FTIR results show that the anhydride monomer was successfully bound to amine group of chitosan. Thermal analysis of the modified structure provides the chitosan fibers with thermal stability while XRD and SEM show the lost of crystallinity of modified chitosan. XRD of modified chitosan shows broader peak pattern and a considerable increase in a dimension while SEM of chitosan presented the single particle morphology while norbornene-chitosan shows aggromolarate behaviour due to the hydrophobic nature of norbornene pendant group which induced aggromolaration of the particles in modified structure.
  3. Chang BP, Hazizan Md Akil, Ramdziah bt Md Nasir
    Sains Malaysiana, 2015;44:819-825.
    As of today, ultra-high molecular weight polyethylene (UHMWPE) is a thermoplastic material normally used as bearing
    components for human joint replacements. However, formation of wear debris from UHMWPE after certain service
    periods may cause adverse effects which remain as unresolved issues. In this study, mechanical and dry sliding wear
    properties of UHMWPE reinforced with different loading of talc particles were investigated. The wear test was carried
    out using Ducom TR-20 pin-on-disc tester at different pressure velocity (pv) factors under dry sliding conditions. The
    worn surfaces and transfer films of pure UHMWPE and talc/UHMWPE composites were observed under scanning electron
    microscope (SEM). The experimental results showed that the microhardness increased with the increase of talc loadings
    in UHMWPE. The 20 wt. % talc/UHMWPE composites showed a 17% increment in microhardness as compared with pure
    UHMWPE. The dry sliding wear behaviour of UHMWPE was also improved upon the reinforcement of talc. The wear rate
    of UHMWPE decreased after incorporation of talc particles. The coefficient of friction (COF) increased slightly under low
    pv conditions. At high pv conditions, the COF decreased in values with increasing talc loadings. The improvement in
    wear behaviour may be attributed to the increase in load-carrying capacity and surface hardness of the talc/UHMWPE
    composites. SEM micrographs on worn surfaces showed that plastic deformation and grooving wear were dominant for
    UHMWPE. The plastic deformation and grooving wear were reduced upon the reinforcement of talc particles. The talc/
    UHMWPE composites produced smoother and uniform transfer films as compared to pure UHMWPE.
  4. Mohd Al Amin Muhamad Nor, Lee, Chain Hong, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Ceramic foams are a class of high porosity materials that are used or being considered for a wide range of technological applications. Ceramic foam was produce by polymer replication method. In this process, commercial polymeric sponge was use as template, dipping with ceramic particles slurry, drying and then sintered to yield a replica of the original foams. The study was focus on the fabrication of different density of ceramic foams by varying the density of ceramic slurries (1.1876, 1.2687, 1.3653 and 1.5295 g/cm3). Properties of ceramic foam produced such as density was characterized accordingly to ASTM C 271-94 and porosity were characterized using Archimedes methods. Compressive and bending strength was performed accordingly to ASTM C1161-94 and C773-88 (1999), respectively. The morphological study was performed using Scanning Electron Microscopy (SEM) and EDX. Density of ceramic foams produced was about 0.5588 and 1.1852 g/cm3, where as porosity was around 26.28 and 70.59 %. Compressive and bending strength was increase from strength also increases from 2.60 to 23.07 MPa and 1.20 to 11.10 MPa, respectively, with increasing of slurries density from 1.1876 to 1.3653 g/cm3. The SEM micrographs show that the cells structure become denser as the slurries density increased. EDX proved that the ceramic used is porcelain. As a conclusion, increasing in slurries density produced ceramic foams with good mechanical properties such as compressive and bending strength and denser body.
  5. Shah Rizal Kasim, Yeong, Meng Yee, Hazizan Md. Akil, Zainal Arifin Ahmad, Hazman Seli
    MyJurnal
    Many attempts have been focused in the past on preparing of synthetic E-tricalcium (E-TCP), which being employed as bone substitute due to its biocompatibility and resorbability. Low temperature synthesize such as sol-gel method become popular due to the high product purity and homogenous composition. Sol-gel method is less economical towards commercialization because the cost of raw materials and the yield of the product that can be achieved. This paper describes the synthesis of ETCP via mixing of CaCO3 and H3PO4 followed by calcinations process at 750qC – 1050qC. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), fourier transformation infra-red (FTIR) were used for characterization and evaluation of the phase composition, morphology, particle size and thermal behavior of the product. E-TCP phase start to occur after calcinations at 750qC.
  6. Yeong, Meng How, Shah Rizal Kasim, Hazizan Md Akil, Zainal Arifin Ahmad
    MyJurnal
    β-tricalcium phosphate (β-TCP) powders were synthesized by using various particles sizes (40 nm – 780 μm) calcium carbonate (CaCO3) and phosphoric acid (H3PO4) at room temperature (25 ˚C). The synthesized powders were characterized by using X-Ray Diffraction (XRD) method. The purity of β-TCP powders were determined from XRD pattern while the crystallite size of β-TCP powders were calculated by using Scherrer equation. Results shows that the purity of β-TCP powders were ranged from 20.33 % to 81.94 % while the crystallite size of β- TCP powders were ranged from 0.04391 μm to 0.06751 μm. From this work, particle size of CaCO3 will influenced the purity but not the mean crystallite size of synthesized β-TCP.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links