Displaying all 2 publications

Abstract:
Sort:
  1. Nawaz M, Abbasi MW, Hisaindee S, Zaki MJ, Abbas HF, Mengting H, et al.
    PMID: 26945123 DOI: 10.1016/j.saa.2016.02.022
    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
  2. Nawaz M, Taha M, Qureshi F, Ullah N, Selvaraj M, Shahzad S, et al.
    J Biomol Struct Dyn, 2022;40(21):10730-10740.
    PMID: 34463216 DOI: 10.1080/07391102.2021.1947892
    Herein, we report the synthesis and inhibitory potential of indazole (Methyl 1H-indazole-4-carboxylate) derivatives (1-13) against α-amylase and α-glucosidase enzymes. The described derivatives demonstrated good inhibitory potential with IC50 values, ranging between 15.04 ± 0.05 to 76.70 ± 0.06 µM ± SEM for α-amylase and 16.99 ± 0.19 to 77.97 ± 0.19 µM ± SEM for α-glucosidase, respectively. In particular, compounds (8-10 and 12) displayed significant inhibitory activities against both the screened enzymes, with their inhibitory potential comparable to the standard acarbose (12.98 ± 0.03 and 12.79 ± 0.17 µM ± SEM, respectively). Additionally, the influence of different substituents on enzyme inhibition activities was assessed to study the structure activity relationships. Molecular docking simulations were performed to rationalize the binding of derivatives/compounds with enzymes. All the synthesized derivatives (1-13) were characterized with the aid of spectroscopic instruments such as 1H-NMR, 13C-NMR, HR-MS, elemental analysis and FTIR.Communicated by Ramaswamy H. Sarma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links