Henna plant (Lawsonia inermis) is an Indian medicinal plant used in traditional medicine for the treatment of various diseases, besides its popularity as a natural dye to colour hand and hair. Research in the recent past has accumulated enormous evidence revealing henna plant to be an excellent source of antioxidants such as total phenolics. In this study, the extraction of total phenolics from henna stems was evaluated using the Folin-Ciocalteu assay. A set of single factor experiments was carried out for identifying the optimum condition of each independent variable affecting total phenolic content (TPC) extraction efficiency of henna stems, namely the solvent type, solvent concentration (v/v, %), extraction time (min) and extraction temperature (oC). Generally, high extraction yield was obtained using aqueous acetone (about 40%) as solvent and the extraction yield could further be increased using a prolonged time of 270 min and a higher incubation temperature of 55°C. Under these optimized conditions, the experimental maximum yield of TPC of 5554.15 ± 73.04 mg GAE/100 g DW was obtained.
This study aimed to optimise potential extraction conditions using response surface methodology (RSM) for yielding maximum levels of total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) scavenging capacity of henna (Lawsonia inermis) stems. The ranges for selected independent variables, namely acetone concentration (20−90%, v/v), extraction time (10−90 min), and extraction temperature (25−45°C) were identified by screening tests. Optimum conditions obtained for extraction of TPC were 47.0% acetone, extraction time of 47.6 min and extraction temperature of 37.3oC. The result also showed that 75.8% acetone, extraction time of 26.2 min and extraction temperature of 41oC yielded the highest DPPH• scavenging capacity. The optimized extraction conditions have resulted in TPC and DPPH• scavenging capacity of 5232.4 mg GAE/100 g DW and 6085.7 mg TE/100 g DW, respectively which similar to the predicted values. Therefore, RSM has successfully optimized the extraction conditions for TPC and radical scavenging capacity of henna stems.
During the production of palm sugar, the palm sap (Arenga pinnata) is heated up to 150 degrees C. Besides the hydrolysis of carbohydrate to generate reducing sugars and degradation of amino acid, many physicochemical changes produced at all these temperatures, having a significant impact on the overall quality of palm sugar. In this study, changes in physico-chemical properties of the palm sap due to heat processing were investigated. Analysis of colour, soluble solid, pH, temperature, sugar and amino acid concentration was determinant. The results showed clearly that the heating process at these high temperatures was necessary to create an environment which was rich in essential precursors for subsequent reactions such as Maillard reaction. Chemical compounds that showed drastic changes in concentration were polar side chain amino acids especially glutamine, asparagine and arginine as well as sucrose and pH value. Other quality characteristics of palm sugar based on colour and soluble solids (Brix) shared an increase in concentration as a function of time.
Pleurotus ostreatus better known as oyster mushroom is widely cultivated and consumed as food in Malaysia. The present study aims to assess the antioxidative potential and total phenolic content of P. ostreatus aqueous extract. The antioxidant activities were evaluated against DPPH and ABTS radical-scavenging activity, ferric-reducing antioxidant power (FRAP) and β-carotene-linoleate bleaching assay, and the Folin-Ciocalteu method for total phenolic content (TPC). The DPPH and ABTS radical-scavenging activity was found to be 63.20% and 87.29% respectively; antioxidant activity using FRAP at 1.45 mM FE/100g and β-carotenelinoleate bleaching assay was 83.51%, while the TPC was found to be 798.55 mg GAE/100g. These antioxidant activities were compared to synthetic antioxidant, BHA and ascorbic acid. Ascorbic acid showed highest scavenging effects on DPPH and ABTS radical, followed by P. ostreatus and BHA (at maximum safety limit). The ferric reducing power of P. ostreatus was significantly higher than BHA and ascorbic acid. The antioxidant activity as assessed in β-carotene-linoleate bleaching assay was found to be higher in BHA compared to P. ostreatus. The aqueous extract of P. ostreatus was found to respond differently in antioxidant assays. The antioxidative activity of the aqueous extract of P. ostreatus correlated with its total phenolic content. Generally, the antioxidant activities of P. ostreatus' aqueous extract are comparable to that of BHA and ascorbic acid to a certain extent.