Ticks are blood-feeding ectoparasites and major vectors of pathogens that cause infectious diseases in humans and animals worldwide including mammals, birds and reptiles. Despite the growing scientific effort in the 20th century, there is still limited information on ticks and tick-borne pathogens in Southeast Asia, especially concerning medical, veterinary, socioeconomic and agricultural aspects in the island nations. This review provides an overview of the current state of knowledge of ticks and their pathogens in the island nations of Southeast Asia and peninsular Malaysia. We aim to stimulate further research studies on ticks and tick-borne pathogens of human and veterinary importance in this geographical region.
Soft ticks (Acari: Argasidae) are the second major family of the blood feeding metastriates and vectors of a number of viral and bacterial pathogens for both humans and animals. Despite the growing effort on tick surveillance and studies worldwide, there is still limited information on the soft tick distribution in the island nations of Southeast Asia, especially species that are medically and veterinarily important. With the aim to provide an overview of the current status of knowledge on soft tick distribution in the island nations of Southeast Asia (Malaysia, Singapore, Brunei, Indonesia, the Philippines and Timor-Leste), this article reviews the species of soft ticks (Acari: Argasidae) and their associated hosts and pathogens, with the addition of a pictorial summary and list of tick species discovered in this region. The most prevalent soft tick genus is Carios, and the host species most associated with findings of soft ticks in this region are bats, particularly of the Pteropodidae and Vespertilionidae families. Furthermore, the only known pathogen originating from soft ticks in the island nations of Southeast Asia was the Keterah virus, which was isolated from Argas pusillus tick in Malaysia.
Studies of ticks in Malaysia from past articles were reviewed, resulting in a list of 47 species belonging to seven genera (Argas, Ornithodoros, Amblyomma, Dermacentor, Haemaphysalis, Ixodes, and Rhipicephalus). The most prevalent genus in Malaysia is Haemaphysalis (20 species), followed by Amblyomma (eight species) and Dermacentor (seven species). Out of 47 species, only 28 have bitten humans, mostly belonging to Haemaphysalis. The most researched tick-borne pathogens in Malaysia are Rickettsia and Anaplasma, and most research was focused on the tropical-lineage brown dog ticks, R. sanguineus sensu lato, and the cattle ticks, Haemaphysalis bispinosa and Rhipicephalus microplus. 18 species were excluded from the list due to lack of definite records or dubious findings: Ornithodoros mimon, O. turicata, Amblyomma breviscutatum, A. clypeolatum, A. integrum, A. maculatum, Dermacentor marginatum, D. taiwanensis, Haemaphysalis birmaniae, H. flava, H. humerosa, H. longicornis, H. punctata, H. sulcata, Ixodes holocyclus, Rhipicephalus appendiculatus, R. annulatus and R. bursa. This paper presents the first complete and updated list for Dermacentor and Ixodes tick species in Malaysia since Kohls (1957).
Literature records of chewing lice (Phthiraptera) from mammals in Malaysia were checked and reviewed, resulting in a list of 13 confirmed species belonging to eight genera (Bovicola, Felicola, Gliricola, Gyropus, Haematomyzus, Heterodoxus, Lorisicola, Trichodectes) from four families (Boopiidae, Gyropidae, Haematomyzidae, Trichodectidae) in three suborders (Amblycera, Ischnocera, Rhynchophthirina). We present a checklist of those 13 chewing lice recorded from Peninsular Malaysia and Malaysian Borneo, including hosts, localities, and literature references. An additional 12 species are listed and discussed as possibly occurring in this country. A host-louse list is also given.
Literature records of sucking lice (Phthiraptera: Anoplura) from Malaysia were checked and reviewed, resulting in a list of 34 established species belonging to 11 genera (Ancistroplax, Atopophthirus, Enderleinellus, Haematopinus, Hamophthirius, Hoplopleura, Linognathus, Neohaematopinus, Pedicinus, Polyplax and Sathrax). Furthermore, three local and six cosmopolitan louse species are regarded as dubious in Malaysia, due to misidentifications or lack of locality records. Also, pathogens known to be associated with the sucking lice are listed. The alarming conservation status of some Malaysian mammalian host species and their sucking lice warrant more research and imminent action to preserve the biodiversity of the country. This paper presents the first complete checklist of anopluran lice from both Peninsular Malaysia and Malaysian Borneo, including localities, literature references and a host-louse list.
We report the presence of a male Haemaphysalis semermis collected from the domestic cat, Felis catus in an aboriginal village located in Pahang, Malaysia. This paper constitutes a new host record of this tick species, and also the first documentation of the infestation of companion animals other than domestic dogs (Canis lupus) by H. semermis in Malaysia. Additionally, we have included an updated host index of the tick species in Southeast Asia.
We report two new records of chewing lice from avian pets in Peninsular Malaysia: Colpocephalum apivorus Tendeiro, 1958 from an Oriental honey buzzard (Pernis ptilorhynchus (Temminck, 1821)), and Myrsidea splendenticola Klockenhoff, 1973 from an albino house crow (Corvus splendens Vieillot, 1817). The scarcity of louse records from avian pets and wild birds, and the lack of louse research in Malaysia are discussed.
This paper describes a new tick-host record of Haemaphysalis wellingtoni from the helmeted guineafowl (Numida meleagris) in Peninsular Malaysia. This record is also the first report of a tick infestation from N. meleagris in Asia. A checklist of the tick-guineafowl associations has been designed, resulting in 32 tick species including H. wellingtoni recorded as infesting N. meleagris worldwide. A list of pathogens harboured or transmitted by H. wellingtoni is provided. The status of H. wellingtoni as a true parasite of N. meleagris, and the health threat posed to the guineafowls are discussed in this paper.
A Trypanosoma screening was conducted on 130 pools comprising 1,241 ticks, collected from 674 selected farm ruminants in Peninsular Malaysia. Of these, nine pools were tested positive for Trypanosoma. Subsequent BLAST searches revealed that the 18S rRNA gene sequences were closely related to Trypanosoma rhipicephalis isolate Chaco CB, with percentage similarities ranging from 95.56% to 99.84%. Phylogenetic analysis showed that three of the nine sequences formed a clade with Trypanosoma rhipicephalis. The remaining six Trypanosoma sequences formed a distinct clade, separate from T. rhipicephalis and other Trypanosoma species, with genetic distances of 4.34% and 4.33-4.58%, respectively. This study marks the first report of tick-associated Trypanosoma in Malaysia and underscores significant research gaps regarding trypanosome interactions with tick hosts in the region.
To shed light on the importance of tick-borne diseases, especially in farm animals that often contact with farm workers, this study aimed to identify ticks and tick-borne pathogens in ruminants in Malaysia. Accordingly, specimen collection was conducted across Peninsular Malaysia yielded a total of 1241 ticks collected from 674 farm ruminants. Among these, four tick species were identified, with Rhipicephalus microplus being the most prevalent, constituting 99.03 % of the total tick population. Analysis of 130 tick pools revealed three positives for Borrelia. BLAST analyses of the flaB and 16S rRNA genes revealed high similarities to Borrelia theileri, ranging from 98.78 to 100 % for flaB and 99.23-99.45 % for 16S rRNA. These results align with the phylogenetic trees, where sequences from both genes clustered together with B. theileri, further supporting this identification. No Rickettsia and Bartonella bacteria were detected. This study represents the first occurrence of B. theileri in R. microplus in Malaysia.
An undescribed relapsing fever group Borrelia species was detected in a male Haemaphysalis semermis tick infesting a rural cat in an indigenous population in Pahang National Park, Peninsular Malaysia. The 16 S rRNA gene sequence revealed close similarity of this variant to several undescribed Borrelia species and Borrelia theileri, with genetic distances ranging from 0.58 to 0.72%. Furthermore, the flaB, gyrB, and the concatenated 16 S rRNA + flaB + gyrB sequence analyses demonstrated that this variant is distinctly separated from multiple undescribed Borrelia species, Borrelia miyamotoi, and B. theileri, with genetic distances ranging from 3.41 to 7.00%. This study not only reports the first Borrelia found in H. semermis but also suggests that it forms a distinct clade within the relapsing fever group in Peninsular Malaysia.
Sinomenine (SN) is a well-documented unique plant alkaloid extracted from many herbal medicines. The present study evaluates the wound healing potentials of SN on dorsal neck injury in rats. A uniform cut was created on Sprague Dawley rats (24) which were arbitrarily aligned into 4 groups receiving two daily topical treatments for 14 days as follows: A, rats had gum acacia; B, rats addressed with intrasite gel; C and D, rats had 30 and 60 mg/ml of SN, respectively. The acute toxicity trial revealed the absence of any toxic signs in rats after two weeks of ingestion of 30 and 300 mg/kg of SN. SN-treated rats showed smaller wound areas and higher wound closure percentages compared to vehicle rats after 5, 10, and 15 days of skin excision. Histological evaluation of recovered wound tissues showed increased collagen deposition, fibroblast content, and decreased inflammatory cells in granulated tissues in SN-addressed rats, which were statistically different from that of gum acacia-treated rats. SN treatment caused positive augmentation of Transforming Growth Factor Beta 1 (angiogenetic factor) in wound tissues, denoting a higher conversion rate of fibroblast into myofibroblast (angiogenesis) that results in faster wound healing action. Increased antioxidant enzymes (SOD and CAT), as well as decreased MDA contents in recovered wound tissues of SN-treated rats, suggest the antioxidant potentials of SN that aid in faster wound recovery. Wound tissue homogenates showed higher hydroxyproline amino acid (collagen content) values in SN-treated rats than in vehicle rats. SN treatment suppressed the production of pro-inflammatory cytokines and increased anti-inflammatory cytokines in the serum of wounded rats. The outcomes present SN as a viable pharmaceutical agent for wound healing evidenced by its positive modulation of the antioxidant, immunohistochemically proteins, hydroxyproline, and anti-inflammatory cytokines.