Displaying all 3 publications

Abstract:
Sort:
  1. Shaharuddin S, Husen R, Othman A
    J Food Sci Technol, 2021 Jun;58(6):2360-2367.
    PMID: 33967332 DOI: 10.1007/s13197-020-04748-0
    Baccaurea pubera is a blood red coloured fruit found exclusively in Borneo. This study was conducted to evaluate the effect of superheated steam treatment on its antioxidant properties and mineral content as well as to determine nutritional values of the fruit. The fruits were treated with superheated steam at 170 °C for 15 min prior to extraction and freeze drying. The results showed that, in comparison to the control, superheated steam treatment enhanced the total phenolic content by 147.8% (287.16 mg GAE/100 g vs. 115.87 mg GAE/100 g) and DPPH radical scavenging activity by 23.7% (66.94% vs. 54.13%). However, there were reductions, as compared to the control treatments, in total flavonoid content by 16.5% (8.29 mg QE/100 g vs. 9.93 mg QE/100 g), lycopene content by 28.6% (0.020 μg/100 g vs. 0.028 μg/100 g) and ferric reducing antioxidant power by 22.2% (844.41 mg TE/100 g vs. 1085.15 mg TE/100 g). The superheated steam treatment was also observed to reduce the mineral content of the fruit, from as little as 3.6% to as high as 52% depending upon the specific mineral.
  2. Husen R, Pihie AH, Nallappan M
    J Ethnopharmacol, 2004 Dec;95(2-3):205-8.
    PMID: 15507337 DOI: 10.1016/j.jep.2004.07.004
    Screening of aqueous extract of Phyllantus niruri (PL), Zingiber zerumbet (ZG), Eurycoma longifolia (TA-a and TA-b) and Andrographis paniculata (AP) to determine their blood glucose lowering effect were conducted in normoglycaemic and Streptozotocin-induced hyperglycaemic rats. Significant reduction in blood glucose level at 52.90% was shown when hyperglycaemic rats were treated with 50 mg/kg body weight (BW) aqueous extract of AP. This effect is enhanced when freeze-dried material was used, where 6.25 mg/kg BW gave 61.81% reduction in blood glucose level. In the administration of TA-a and TA-b, positive results in hyperglyacaemic rats were only obtained when 150 mg/kg BW of the aqueous extract was used. No significant reduction in blood glucose level were shown in hyperglycaemic rats treated with PL and ZG at all concentrations used (50, 100 and 150 mg/kg BW). In normoglycaemic rats, no significant reduction was noted when all the same extracts were used.
  3. Ajien A, Idris J, Md Sofwan N, Husen R, Seli H
    Waste Manag Res, 2023 Jan;41(1):37-51.
    PMID: 36346183 DOI: 10.1177/0734242X221127167
    The coconut industry generates a relatively large amount of coconut shell and husk biomass, which can be utilized for industrial and environmental purposes. Immense potential for added value when coconut shell and husk biomass are turned into biochar and limited studies are available, making this review paper significant. This paper specifically presents the production and activation technology, economic and financial aspect and application of biochar from coconut shell and husk biomass. Pyrolysis, gasification and self-sustained carbonization are among the production technology discussed to convert this biomass into carbon-rich materials with distinctive characteristics. The surface characteristics of coconut-based biochar, that is, Brunauer-Emmett-Teller (BET) surface area (SBET), pore volume (Vp), pore diameter (dp) and surface functional group can be enhanced by physical and chemical activation and metal impregnation. Due to their favourable characteristics, coconut shell and husk-activated biochar exhibit their potential as valuable adsorption materials for industrial and environmental application including biodiesel production, capacitive deionization, soil amendment, water treatment and carbon sequestration. With the knowledge of the potential, the coconut industry can contribute to both the local and global biocircular economy by producing coconut shell and husk biochar for economic development and environmental remediation. The capital and operating cost for production and activation processes must be taken into account to ensure bioeconomy sustainability, hence coconut shell and husk biomass have a great potential for income generation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links