Displaying all 3 publications

Abstract:
Sort:
  1. Ilowefah M, Bakar J, Ghazali HM, Mediani A, Muhammad K
    J Food Sci Technol, 2015 Sep;52(9):5534-45.
    PMID: 26344967 DOI: 10.1007/s13197-014-1661-7
    In the current study, effects of fermentation on physicochemical and functional properties of brown rice flour (BRF) were investigated. Fermentation conditions were optimized using response surface methodology to achieve moderate acidity (pH 5-6), specifically pH 5.5 of brown rice batter with time, temperature and yeast concentration as the independent variables. The results indicated that brown rice batter was well fermented to maintain pH 5.5 at optimum conditions of 32 °C for 6.26 h using 1 % yeast concentration. Fermentation at moderate acidity significantly increased the levels of protein, total ash, insoluble fiber, soluble fibre, minerals, phenolics, antioxidants, resistant starch, riboflavin, pyridoxine, nicotinic acid, γ-tocotrienol, and δ-tocotrienol. However, it reduced the contents of γ-oryzanol, γ-tocopherol, α-tocopherol, phytic acid, amylose and total starch. Foaming capacity, foaming stability, oil holding capacity, gelatinization temperatures, enthalpy and whiteness of BRF were increased after fermentation. In contrast, its swelling power, water solubility index, hot paste viscosity, breakdown, and setback significantly decreased. Microstructure of BRF was also influenced, where its starch granules released from its enclosed structure after fermentation. This investigation shows evidence that yeast fermentation modified the functionality of BRF and can be used as a functional food ingredient.
  2. Ilowefah M, Chinma C, Bakar J, Ghazali HM, Muhammad K, Makeri M
    Foods, 2014 Feb 12;3(1):149-159.
    PMID: 28234309 DOI: 10.3390/foods3010149
    As fermentation could reduce the negative effects of bran on final cereal products, the utilization of whole-cereal flour is recommended, such as brown rice flour as a functional food ingredient. Therefore, this study aimed to investigate the effect of fermented brown rice flour on white rice flour, white rice batter and its steamed bread qualities. Brown rice batter was fermented using commercial baker's yeast (Eagle brand) according to the optimum conditions for moderate acidity (pH 5.5) to obtain fermented brown rice flour (FBRF). The FBRF was added to white rice flour at 0%, 10%, 20%, 30%, 40% and 50% levels to prepare steamed rice bread. Based on the sensory evaluation test, steamed rice bread containing 40% FBRF had the highest overall acceptability score. Thus, pasting properties of the composite rice flour, rheological properties of its batter, volume and texture properties of its steamed bread were determined. The results showed that peak viscosity of the rice flour containing 40% FBRF was significantly increased, whereas its breakdown, final viscosity and setback significantly decreased. Viscous, elastic and complex moduli of the batter having 40% FBRF were also significantly reduced. However, volume, specific volume, chewiness, resilience and cohesiveness of its steamed bread were significantly increased, while hardness and springiness significantly reduced in comparison to the control. These results established the effectiveness of yeast fermentation in reducing the detrimental effects of bran on the sensory properties of steamed white rice bread and encourage the usage of brown rice flour to enhance the quality of rice products.
  3. Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ, et al.
    Int J Nanomedicine, 2013;8:2497-508.
    PMID: 23885175 DOI: 10.2147/IJN.S42367
    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6-1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links