Affiliations 

  • 1 UPM-BERNAS Research laboratory, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
J Food Sci Technol, 2015 Sep;52(9):5534-45.
PMID: 26344967 DOI: 10.1007/s13197-014-1661-7

Abstract

In the current study, effects of fermentation on physicochemical and functional properties of brown rice flour (BRF) were investigated. Fermentation conditions were optimized using response surface methodology to achieve moderate acidity (pH 5-6), specifically pH 5.5 of brown rice batter with time, temperature and yeast concentration as the independent variables. The results indicated that brown rice batter was well fermented to maintain pH 5.5 at optimum conditions of 32 °C for 6.26 h using 1 % yeast concentration. Fermentation at moderate acidity significantly increased the levels of protein, total ash, insoluble fiber, soluble fibre, minerals, phenolics, antioxidants, resistant starch, riboflavin, pyridoxine, nicotinic acid, γ-tocotrienol, and δ-tocotrienol. However, it reduced the contents of γ-oryzanol, γ-tocopherol, α-tocopherol, phytic acid, amylose and total starch. Foaming capacity, foaming stability, oil holding capacity, gelatinization temperatures, enthalpy and whiteness of BRF were increased after fermentation. In contrast, its swelling power, water solubility index, hot paste viscosity, breakdown, and setback significantly decreased. Microstructure of BRF was also influenced, where its starch granules released from its enclosed structure after fermentation. This investigation shows evidence that yeast fermentation modified the functionality of BRF and can be used as a functional food ingredient.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.