Displaying all 4 publications

Abstract:
Sort:
  1. Manoharan P, Chandrasekaran K, Chandran R, Ravichandran S, Mohammad S, Jangir P
    Environ Sci Pollut Res Int, 2024 Feb;31(7):11037-11080.
    PMID: 38217814 DOI: 10.1007/s11356-023-31608-z
    The large use of renewable sources and plug-in electric vehicles (PEVs) would play a critical part in achieving a low-carbon energy source and reducing greenhouse gas emissions, which are the primary cause of global warming. On the other hand, predicting the instability and intermittent nature of wind and solar power output poses significant challenges. To reduce the unpredictable and random nature of renewable microgrids (MGs) and additional unreliable energy sources, a battery energy storage system (BESS) is connected to an MG system. The uncoordinated charging of PEVs offers further hurdles to the unit commitment (UC) required in contemporary MG management. The UC problem is an exceptionally difficult optimization problem due to the mixed-integer structure, large scale, and nonlinearity. It is further complicated by the multiple uncertainties associated with renewable sources, PEV charging and discharging, and electricity market pricing, in addition to the BESS degradation factor. Therefore, in this study, a new variant of mixed-integer particle swarm optimizer is introduced as a reliable optimization framework to handle the UC problem. This study considers six various case studies of UC problems, including uncertainties and battery degradation to validate the reliability and robustness of the proposed algorithm. Out of which, two case studies defined as a multiobjective problem, and it has been transformed into a single-objective model using different weight factors. The simulation findings demonstrate that the proposed approach and improved methodology for the UC problem are effective than its peers. Based on the average results, the economic consequences of numerous scenarios are thoroughly examined and contrasted, and some significant conclusions are presented.
  2. Kalita K, Ramesh JVN, Cepova L, Pandya SB, Jangir P, Abualigah L
    Sci Rep, 2024 Jan 20;14(1):1816.
    PMID: 38245654 DOI: 10.1038/s41598-024-52083-7
    The exponential distribution optimizer (EDO) represents a heuristic approach, capitalizing on exponential distribution theory to identify global solutions for complex optimization challenges. This study extends the EDO's applicability by introducing its multi-objective version, the multi-objective EDO (MOEDO), enhanced with elite non-dominated sorting and crowding distance mechanisms. An information feedback mechanism (IFM) is integrated into MOEDO, aiming to balance exploration and exploitation, thus improving convergence and mitigating the stagnation in local optima, a notable limitation in traditional approaches. Our research demonstrates MOEDO's superiority over renowned algorithms such as MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO. This is evident in 72.58% of test scenarios, utilizing performance metrics like GD, IGD, HV, SP, SD and RT across benchmark test collections (DTLZ, ZDT and various constraint problems) and five real-world engineering design challenges. The Wilcoxon Rank Sum Test (WRST) further confirms MOEDO as a competitive multi-objective optimization algorithm, particularly in scenarios where existing methods struggle with balancing diversity and convergence efficiency. MOEDO's robust performance, even in complex real-world applications, underscores its potential as an innovative solution in the optimization domain. The MOEDO source code is available at: https://github.com/kanak02/MOEDO .
  3. Pandya SB, Jangir P, Mahdal M, Kalita K, Chohan JS, Abualigah L
    Heliyon, 2024 Feb 29;10(4):e26369.
    PMID: 38404848 DOI: 10.1016/j.heliyon.2024.e26369
    In this study, we tackle the challenge of optimizing the design of a Brushless Direct Current (BLDC) motor. Utilizing an established analytical model, we introduced the Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) method, a biomimetic approach based on Pareto optimality, dominance, and external archiving. We initially tested MOGNDO on standard multi-objective benchmark functions, where it showed strong performance. When applied to the BLDC motor design with the objectives of either maximizing operational efficiency or minimizing motor mass, the MOGNDO algorithm consistently outperformed other techniques like Ant Lion Optimizer (ALO), Ion Motion Optimization (IMO), and Sine Cosine Algorithm (SCA). Specifically, MOGNDO yielded the most optimal values across efficiency and mass metrics, providing practical solutions for real-world BLDC motor design. The MOGNDO source code is available at: https://github.com/kanak02/MOGNDO.
  4. Kalita K, Naga Ramesh JV, Čep R, Pandya SB, Jangir P, Abualigah L
    Heliyon, 2024 Mar 15;10(5):e26665.
    PMID: 38486727 DOI: 10.1016/j.heliyon.2024.e26665
    This research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi-objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non-dominated sorting grey wolf optimizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting genetic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links