Displaying all 5 publications

  1. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
  2. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    PeerJ, 2016;4:e2229.
    PMID: 27635307 DOI: 10.7717/peerj.2229
    The receptor activator of nuclear factor kappa-B (RANK)/RANK ligand/osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. OPG has been used systemically in the treatment of bone diseases. In searching for more effective and safer treatment for bone diseases, we investigated newly formulated OPG-chitosan complexes, which is prepared as a local application for its osteogenic potential to remediate bone defects.
  3. Qasem MA, Noordin MI, Arya A, Alsalahi A, Jayash SN
    PeerJ, 2018;6:e4788.
    PMID: 29844959 DOI: 10.7717/peerj.4788
    Background: Ceratonia siliqua pods (carob) have been nominated to control the high blood glucose of diabetics. In Yemen, however, its antihyperglycemic activity has not been yet assessed. Thus, this study evaluated the in vitro inhibitory effect of the methanolic extract of carob pods against α-amylase and α-glucosidase and the in vivo glycemic effect of such extract in streptozotocin-nicotinamide induced diabetic rats.

    Methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric reducing antioxidant power assay (FRAP) were applied to evaluate the antioxidant activity of carob. In vitro cytotoxicity of carob was conducted on human hepatocytes (WRL68) and rat pancreatic β-cells (RIN-5F). Acute oral toxicity of carob was conducted on a total of 18 male and 18 female Sprague-Dawley (SD) rats, which were subdivided into three groups (n = 6), namely: high and low dose carob-treated (CS5000 and CS2000, respectively) as well as the normal control (NC) receiving a single oral dose of 5,000 mg kg-1 carob, 2,000 mg kg-1 carob and 5 mL kg-1 distilled water for 14 days, respectively. Alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, total bilirubin, creatinine and urea were assessed. Livers and kidneys were harvested for histopathology. In vitro inhibitory effect against α-amylase and α-glucosidase was evaluated. In vivo glycemic activity was conducted on 24 male SD rats which were previously intraperitoneally injected with 55 mg kg-1 streptozotocin (STZ) followed by 210 mg kg-1nicotinamide to induce type 2 diabetes mellitus. An extra non-injected group (n = 6) was added as a normal control (NC). The injected-rats were divided into four groups (n = 6), namely: diabetic control (D0), 5 mg kg-1glibenclamide-treated diabetic (GD), 500 mg kg-1 carob-treated diabetic (CS500) and 1,000 mg kg-1 carob-treated diabetic (CS1000). All groups received a single oral daily dose of their treatment for 4 weeks. Body weight, fasting blood glucose (FBG), oral glucose tolerance test, biochemistry, insulin and hemostatic model assessment were assessed. Pancreases was harvested for histopathology.

    Results: Carob demonstrated a FRAP value of 3191.67 ± 54.34 µmoL Fe++ and IC50 of DPPH of 11.23 ± 0.47 µg mL-1. In vitro, carob was non-toxic on hepatocytes and pancreatic β-cells. In acute oral toxicity, liver and kidney functions and their histological sections showed no abnormalities. Carob exerted an in vitro inhibitory effect against α-amylase and α-glucosidase with IC50 of 92.99 ± 0.22 and 97.13 ± 4.11 µg mL-1, respectively. In diabetic induced rats, FBG of CS1000 was significantly less than diabetic control. Histological pancreatic sections of CS1000 showed less destruction of β-cells than CS500 and diabetic control.

    Conclusion: Carob pod did not cause acute systemic toxicity and showed in vitro antioxidant effects. On the other hand, inhibiting α-amylase and α-glucosidase was evident. Interestingly, a high dose of carob exhibits an in vivo antihyperglycemic activity and warrants further in-depth study to identify the potential carob extract composition.

  4. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    PeerJ, 2017;5:e3513.
    PMID: 28674665 DOI: 10.7717/peerj.3513
    BACKGROUND: Osteoprotegerin (OPG) is used for the systemic treatment of bone diseases, although it has many side effects. The aim of this study was to investigate a newly formulated OPG-chitosan gel for local application to repair bone defects. Recent studies have reported that immunodetection of osteopontin (OPN) and osteocalcin (OC) can be used to characterise osteogenesis and new bone formation.

    METHODS: The osteogenic potential of the OPG-chitosan gel was evaluated in rabbits. Critical-sized defects were created in the calvarial bone, which were either left unfilled (control; group I), or filled with chitosan gel (group II) or OPG-chitosan gel (group III), with rabbits sacrificed at 6 and 12 weeks. Bone samples from the surgical area were decalcified and treated with routine histological and immunohistochemical protocols using OC, OPN, and cathepsin K (osteoclast marker) antibodies. The toxicity of the OPG-chitosan gel was evaluated by biochemical assays (liver and kidney function tests).

    RESULTS: The mean bone growth in defects filled with the OPG-chitosan gel was significantly higher than those filled with the chitosan gel or the unfilled group (p 

  5. Al-Namnam NM, Jayash SN, Hariri F, Rahman ZAA, Alshawsh MA
    Gene Ther, 2021 Nov;28(10-11):620-633.
    PMID: 33619359 DOI: 10.1038/s41434-021-00238-w
    Apert syndrome is a genetic disorder characterised by craniosynostosis and structural discrepancy of the craniofacial region as well as the hands and feet. This condition is closely linked with fibroblast growth factor receptor-2 (FGFR2) gene mutations. Gene therapies are progressively being tested in advanced clinical trials, leading to a rise of its potential clinical indications. In recent years, research has made great progress in the gene therapy of craniosynostosis syndromes and several studies have investigated its influences in preventing/diminishing the complications of Apert syndrome. This article reviewed and exhibited different techniques of gene therapy and their influences in Apert syndrome progression. A systematic search was executed using electronic bibliographic databases including PubMed, EMBASE, ScienceDirect, SciFinder and Web of Science for all studies of gene therapy for Apert syndrome. The primary outcomes measurements vary from protein to gene expressions. According to the findings of included studies, we conclude that the gene therapy using FGF in Apert syndrome was critical in the regulation of suture fusion and patency, occurred via alterations in cellular proliferation. The superior outcome could be brought by biological therapies targeting the FGF/FGFR signalling. More studies in molecular genetics in Apert syndrome are recommended. This study reviews the current literature and provides insights to future possibilities of genetic therapy as intervention in Apert syndrome.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links