Displaying all 14 publications

Abstract:
Sort:
  1. Karim MKA, Sabarudin A, Muhammad NA, Ng KH
    Radiol Phys Technol, 2019 Dec;12(4):374-381.
    PMID: 31468370 DOI: 10.1007/s12194-019-00532-8
    This study aimed to evaluate effective dose and size-specific dose estimate (SSDE) of computed tomography angiography (CTA) examination using an anthropomorphic phantom. We included three CTA examination protocols to evaluate the intra- and extra-cranial arteries, pulmonary artery (CTPA), and abdominal vessels. Patient SSDEs were measured retrospectively to estimate patient dose, relative to the bodyweight of the patient and volume CT dose index (CTDIvol). Our findings revealed that the highest dose was absorbed by the left lobe of the thyroid gland during intra-/extra-cranial CTA and CTPA, that is, 14.11 ± 0.24 mGy and 16.20 ± 3.95 mGy, respectively. However, the highest absorbed dose in abdominal/pelvic CTA was the gonads (8.98 ± 0.30 mGy), while other radiosensitive organs in intra- and extra-cranial CTA, CTPA, and abdominal/pelvic CTA did not demonstrate significant differences between organs/structures with p value 0.88, 0.11, and 0.54, respectively. The estimated effective dose in intra-/extra-cranial CTA was lower in patients (0.80 ± 0.60 mSv) than in the phantom (0.83 mSv), but it was the opposite for CTPA, with the effective dose being higher in patients (7.54 ± 3.09 mSv) than in the phantom (6.68 mSv). Similar to the effective dose, only CTPA SSDEs were significantly higher in men than in women (19.74 ± 4.79 mGy versus 7.9 mGy). Effective dose and SSDE are clinically relevant parameters that can help estimate a more accurate patient dose based on a patient's size.
  2. Karim MKA, Rahim NA, Matsubara K, Hashim S, Mhareb MHA, Musa Y
    J Xray Sci Technol, 2019;27(1):139-147.
    PMID: 30584178 DOI: 10.3233/XST-180397
    BACKGROUND: Numerous techniques had been proposed to reduce radiation exposure in computed tomography (CT) including the use of radiation shielding.

    OBJECTIVE: This study aims to evaluate efficacy of using a bismuth breast shield and optimized scanning parameter to reduce breast absorbed doses from CT thorax examination.

    METHODS: Five protocols comprising the standard CT thorax clinical protocol (CP1) and four modified protocols (CP2 to CP5) were applied in anthropomorphic phantom scans. The phantom was configured as a female by placing a breast component on the chest. The breast component was divided into four quadrants, where 2 thermoluminescence dosimeters (TLD-100) were inserted into each quadrant to measure the absorbed dose. The bismuth shield was placed over the breast component during CP4 and CP5 scans.

    RESULTS: The pattern of absorbed doses in each breast and quadrant were approximately the same for all protocols, where the 4th quadrant > 3rd quadrant > 2nd quadrant > 1st quadrant. The mean absorbed dose value in CP3 was reduced to almost 34% of CP1's mean absorbed dose. It was reduced even lower to 15% of CP1's mean absorbed dose when the breast shield was used in CP5.

    CONCLUSION: This study showed that CT radiation exposure on the breast could be reduced by using a bismuth shield and low tube potential protocol without compromising the image quality.

  3. Harun HH, Kasim MRM, Nurhidayu S, Ash'aari ZH, Kusin FM, Karim MKA
    PMID: 33923119 DOI: 10.3390/ijerph18094562
    The aim of this study was to propose a groundwater quality index (GWQI) that presents water quality data as a single number and represents the water quality level. The development of the GWQI in agricultural areas is vital as the groundwater considered as an alternative water source for domestic purposes. The insufficiency of the groundwater quality standard in Malaysia revealed the importance of the GWQI development in determining the quality of groundwater. Groundwater samples were collected from thirteen groundwater wells in the Northern Kuala Langat and the Southern Kuala Langat regions from February 2018 to January 2019. Thirty-four parameters that embodied physicochemical characteristics, aggregate indicator, major ions, and trace elements were considered in the development of the GWQI. Multivariate analysis has been used to finalize the important parameters by using principal component analysis (PCA). Notably, seven parameters-electrical conductivity, chemical oxygen demand (COD), magnesium, calcium, potassium, sodium, and chloride were chosen to evaluate the quality of groundwater. The GWQI was then verified by comparing the groundwater quality in Kota Bharu, Kelantan. A sensitivity analysis was performed on this index to verify its reliability. The sensitivity GWQI has been analyzed and showed high sensitivity to any changes of the pollutant parameters. The development of GWQI should be beneficial to the public, practitioners, and industries. From another angle, this index can help to detect any form of pollution which ultimately could be minimized by controlling the sources of pollutants.
  4. Sabarudin A, Siong TW, Chin AW, Hoong NK, Karim MKA
    Sci Rep, 2019 03 13;9(1):4374.
    PMID: 30867480 DOI: 10.1038/s41598-019-40758-5
    In this report we have evaluated radiation effective dose received by patients during ECG-gated CCTA examinations based on gender, heart rate, tube voltage protocol and body mass index (BMI). A total of 1,824 patients were retrospectively recruited (1,139 men and 685 women) and they were divided into Group 1 (CCTA with calcium scoring), Group 2 (CCTA without calcium scoring) and Group 3 (only calcium scoring), where the association between gender, heart rate, tube voltage protocol and body mass index (BMI) were analysed. Examinations were performed using a retrospective ECG-gated CCTA protocol and the effective doses were calculated from the dose length product with a conversion coefficient of 0.026 mSv.mGy-1cm-1. No significant differences were observed in the mean effective dose between gender in all groups. The mean estimated dose was significantly higher when the heart rate was lower in Group 1 (p 
  5. Isa INC, Rahmat SMS, Dom SM, Kayun Z, Karim MKA
    J Xray Sci Technol, 2019;27(4):631-639.
    PMID: 31205011 DOI: 10.3233/XST-190491
    There are several factors that may contribute to the increase in radiation dose of CT including the use of unoptimized protocols and improper scanning technique. In this study, we aim to determine significant impact on radiation dose as a result of mis-centering during CT head examination. The scanning was performed by using Toshiba Aquilion 64 slices multi-detector CT (MDCT) scanner and dose were measured by using calibrated ionization chamber. Two scanning protocols of routine CT head; 120 kVp/ 180 mAs and 100 kVp/ 142 mAs were used represent standard and low dose, respectively. As reference measurement, the dose was first measured on standard cylindrical polymethyl methacrylate (PMMA) phantom that positioned at 104 cm from the floor (reference isocenter). The positions then were varied to simulate mis-centering by 5 cm from isocenter, superiorly and inferiorly at 109 cm, 114 cm, 119 cm, 124 cm and 99 cm, 94 cm, 89 cm, 84 cm, respectively. Scanning parameter and dose information from the console were recorded for the radiation effective dose (E) measurement. The highest mean CTDIvol value for MCS and MCI were 105.06 mGy (at +10 cm) and 105.51 mGy (at - 10 cm), respectively which differed significantly (p 
  6. Uthandi D, Sabarudin A, Mohd Z, Rahman MAA, Karim MKA
    Curr Med Imaging Rev, 2019 Aug 21.
    PMID: 32407281 DOI: 10.2174/1573405615666190821115426
    BACKGROUND: With the advancement of technology, Computed Tomography (CT) scan imaging could be used to gain deeper insight into the cause of death.

    AIM: The purpose of this study is to perform a systematic review of the efficacy of Post-Mortem Computed Tomography (PMCT) scan compared with conventional autopsies gleaned from literature published in English between the year 2009 and 2016.

    METHODOLOGY: A literature search was conducted in three databases, namely PubMed, MEDLINE, and Scopus. A total of 387 articles were retrieved, but only 21 studies were accepted after meeting the review criteria. Data, such as the number of victims, the number of radiologists and forensic pathologists involved, causes of death, and additional and missed diagnoses in PMCT scans were tabulated and analysed by two independent reviewers.

    RESULTS: Compared with the conventional autopsy, the accuracy of PMCT scans in detecting injuries and causes of death was observed to range between 20% and 80%. The analysis also showed that PMCT had more advantages in detecting fractures, fluid in airways, gas in internal organs, major hemorrhages, fatty liver, stones, and bullet fragments. Despite its benefits, PMCT also could miss certain important lesion in a certain region such as cardiovascular injuries and minor vascular injuries.

    CONCLUSIONS: This systematic review suggests that PMCT can replace most of the conventional autopsy in specific cases and is also a good complementary tool in most cases.

  7. Radzi SFM, Karim MKA, Saripan MI, Rahman MAA, Isa INC, Ibahim MJ
    J Pers Med, 2021 Sep 29;11(10).
    PMID: 34683118 DOI: 10.3390/jpm11100978
    Automated machine learning (AutoML) has been recognized as a powerful tool to build a system that automates the design and optimizes the model selection machine learning (ML) pipelines. In this study, we present a tree-based pipeline optimization tool (TPOT) as a method for determining ML models with significant performance and less complex breast cancer diagnostic pipelines. Some features of pre-processors and ML models are defined as expression trees and optimal gene programming (GP) pipelines, a stochastic search system. Features of radiomics have been presented as a guide for the ML pipeline selection from the breast cancer data set based on TPOT. Breast cancer data were used in a comparative analysis of the TPOT-generated ML pipelines with the selected ML classifiers, optimized by a grid search approach. The principal component analysis (PCA) random forest (RF) classification was proven to be the most reliable pipeline with the lowest complexity. The TPOT model selection technique exceeded the performance of grid search (GS) optimization. The RF classifier showed an outstanding outcome amongst the models in combination with only two pre-processors, with a precision of 0.83. The grid search optimized for support vector machine (SVM) classifiers generated a difference of 12% in comparison, while the other two classifiers, naïve Bayes (NB) and artificial neural network-multilayer perceptron (ANN-MLP), generated a difference of almost 39%. The method's performance was based on sensitivity, specificity, accuracy, precision, and receiver operating curve (ROC) analysis.
  8. Harun HH, Karim MKA, Abbas Z, Sabarudin A, Muniandy SC, Ibahim MJ
    J Xray Sci Technol, 2020;28(5):893-903.
    PMID: 32741801 DOI: 10.3233/XST-200699
    PURPOSE: To evaluate the influence of iterative reconstruction (IR) levels on Computed Tomography (CT) image quality and to establish Figure of Merit (FOM) value for CT Pulmonary Angiography (CTPA) examinations.

    METHODS: Images of 31 adult patients who underwent CTPA examinations in our institution from March to April 2019 were retrospectively collected. Other data, such as scanning parameters, radiation dose and body habitus information from the subjects were also recorded. Six different levels of IR were applied to the volume data of the subjects. Five circles of the region of interest (ROI) were drawn in five different arteries namely, pulmonary trunk, right pulmonary artery, left pulmonary artery, ascending aorta and descending aorta. The mean Signal-to-noise ratio (SNR) was obtained, and the FOM was calculated in a fraction of the SNR2 divided by volume-weighted CT dose index (CTDIvol) and SNR2 divided by the size-specific dose estimates (SSDE).

    RESULTS: Overall, we observed that the mean value of CTDIvol and SSDE were 13.79±7.72 mGy and 17.25±8.92 mGy, respectively. Notably, SNR values significantly increase with increase of the IR level (p 

  9. Yunus MM, Sabarudin A, Karim MKA, Nohuddin PNE, Zainal IA, Shamsul MSM, et al.
    Diagnostics (Basel), 2022 Aug 19;12(8).
    PMID: 36010355 DOI: 10.3390/diagnostics12082007
    Atherosclerosis is known as the leading factor in heart disease with the highest mortality rate among the Malaysian population. Usually, the gold standard for diagnosing atherosclerosis is by using the coronary computed tomography angiography (CCTA) technique to look for plaque within the coronary artery. However, qualitative diagnosis for noncalcified atherosclerosis is vulnerable to false-positive diagnoses, as well as inconsistent reporting between observers. In this study, we assess the reproducibility and repeatability of segmenting atherosclerotic lesions manually and semiautomatically in CCTA images to identify the most appropriate CCTA image segmentation method for radiomics analysis to quantitatively extract the atherosclerotic lesion. Thirty (30) CCTA images were taken retrospectively from the radiology image database of Hospital Canselor Tuanku Muhriz (HCTM), Kuala Lumpur, Malaysia. We extract 11,700 radiomics features which include the first-order, second-order and shape features from 180 times of image segmentation. The interest vessels were segmentized manually and semiautomatically using LIFEx (Version 7.0.15, Institut Curie, Orsay, France) software by two independent radiology experts, focusing on three main coronary blood vessels. As a result, manual segmentation with a soft-tissuewindowing setting yielded higher repeatability as compared to semiautomatic segmentation with a significant intraclass correlation coefficient (intra-CC) 0.961 for thefirst-order and shape features; intra-CC of 0.924 for thesecond-order features with p < 0.001. Meanwhile, the semiautomatic segmentation has higher reproducibility as compared to manual segmentation with significant interclass correlation coefficient (inter-CC) of 0.920 (first-order features) and a good interclass correlation coefficient of 0.839 for the second-order features with p < 0.001. The first-order, shape order and second-order features for both manual and semiautomatic segmentation have an excellent percentage of reproducibility and repeatability (intra-CC > 0.9). In conclusion, semi-automated segmentation is recommended for inter-observer study while manual segmentation with soft tissue-windowing can be used for single observer study.
  10. Ramli Z, Karim MKA, Effendy N, Abd Rahman MA, Kechik MMA, Ibahim MJ, et al.
    Diagnostics (Basel), 2022 Dec 12;12(12).
    PMID: 36553132 DOI: 10.3390/diagnostics12123125
    Cervical cancer is the most common cancer and ranked as 4th in morbidity and mortality among Malaysian women. Currently, Magnetic Resonance Imaging (MRI) is considered as the gold standard imaging modality for tumours with a stage higher than IB2, due to its superiority in diagnostic assessment of tumour infiltration with excellent soft-tissue contrast. In this research, the robustness of semi-automatic segmentation has been evaluated using a flood-fill algorithm for quantitative feature extraction, using 30 diffusion weighted MRI images (DWI-MRI) of cervical cancer patients. The relevant features were extracted from DWI-MRI segmented images of cervical cancer. First order statistics, shape features, and textural features were extracted and analysed. The intra-class relation coefficient (ICC) was used to compare 662 radiomic features extracted from manual and semi-automatic segmentations. Notably, the features extracted from the semi-automatic segmentation and flood filling algorithm (average ICC = 0.952 0.009, p > 0.05) were significantly higher than the manual extracted features (average ICC = 0.897 0.011, p > 0.05). Henceforth, we demonstrate that the semi-automatic segmentation is slightly expanded to manual segmentation as it produces more robust and reproducible radiomic features.
  11. Hasan N, Hasani NAH, Omar E, Sham FR, Fuad SBSA, Karim MKA, et al.
    Cancer Biomark, 2023;38(1):61-75.
    PMID: 37522193 DOI: 10.3233/CBM-220268
    BACKGROUND: A complicated interplay between radiation doses, tumour microenvironment (TME), and host immune system is linked to the active participation of immune response.

    OBJECTIVE: The effects of single targeted 2 Gy and 8 Gy gamma-ray irradiations on the immune cell population (lymphocytes, B-cells, T-cells, neutrophils, eosinophils, and macrophages) in EMT6 mouse-bearing tumour models was investigated.

    METHODS: The effects of both irradiation doses in early (96 hours) and acute phase (5 to 11 days) post-irradiation on immune parameters were monitored in blood circulation and TME using flow cytometry. Simultaneously, selected cytokines related to immune cells within the TME were measured using multiplex ELISA.

    RESULTS: A temporary reduction in systemic total white blood count (TWBC) resulted from an early phase (96 hours) of gamma-ray irradiation at 2 Gy and 8 Gy compared to sham control group. No difference was obtained in the acute phase. Neutrophils dominated among other immune cells in TME in sham control group. Eosinophils in TME was significantly increased after 8 Gy treatment in acute phase compared to sham control (p< 0.005). Furthermore, the increment of tumour necrosis (TNF)-α, eotaxin and interleukin (IL)-7 (p< 0.05) in both treatment groups and phases were associated with anti-tumour activities within TME by gamma-ray irradiation.

    CONCLUSION: The temporary changes in immune cell populations within systemic circulation and TME induced by different doses of gamma-ray irradiation correlated with suppression of several pro-tumorigenic cytokines in mouse-bearing EMT6 tumour models.

  12. Sham NFR, Hasani NAH, Hasan N, Karim MKA, Fuad SBSA, Hasbullah HH, et al.
    Sci Rep, 2023 Feb 22;13(1):3108.
    PMID: 36813833 DOI: 10.1038/s41598-023-29925-x
    Cancer recurrence is often associated with the acquisition of radioresistance by cancer tissues due to failure in radiotherapy. The underlying mechanism leading to the development of acquired radioresistance in the EMT6 mouse mammary carcinoma cell line and the potential pathway involved was investigated by comparing differential gene expressions between parental and acquired radioresistance cells. EMT6 cell line was exposed to 2 Gy/per cycle of gamma-ray and the survival fraction between EMT6-treated and parental cells was compared. EMT6RR_MJI (acquired radioresistance) cells was developed after 8 cycles of fractionated irradiation. The development of EMT6RR_MJI cells was confirmed with further irradiation at different doses of gamma-ray, and both the survival fraction and migration rates were measured. Higher survival fraction and migration rates were obtained in EMT6RR_MJI cells after exposure to 4 Gy and 8 Gy gamma-ray irradiations compared to their parental cells. Gene expression between EMT6RR_MJI and parental cells was compared, and 16 genes identified to possess more than tenfold changes were selected and validated using RT-PCR. Out of these genes, 5 were significantly up-regulated i.e., IL-6, PDL-1, AXL, GAS6 and APCDD1. Based on pathway analysis software, the development of acquired radioresistance in EMT6RR_MJI was hypothesized through JAK/STAT/PI3K pathway. Presently, CTLA-4 and PD-1 were determined to be associated with JAK/STAT/PI3K pathway, where both their expressions were significantly increased in EMT6RR_MJI compared to parental cells in the 1st, 4th and 8th cycle of radiation. As a conclusion, the current findings provided a mechanistic platform for the development of acquired radioresistance in EMT6RR_MJI through overexpression of CTLA-4 and PD-1, and novel knowledge on therapeutic targets for recurrent radioresistant cancers.
  13. Hasan N, Sham NFR, Karim MKA, Fuad SBSA, Hasani NAH, Omar E, et al.
    Sci Rep, 2021 Jul 15;11(1):14559.
    PMID: 34267293 DOI: 10.1038/s41598-021-93964-5
    We presented a development of a custom lead shield and mouse strainer for targeted irradiation from the gamma-cell chamber. This study was divided into two parts i.e., to (i) fabricate the shield and strainer from a lead (Pb) and (ii) optimize the irradiation to the mice-bearing tumour model with 2 and 8 Gy absorbed doses. The lead shielding was fabricated into a cuboid shape with a canal on the top and a hole on the vertical side for the beam path. Respective deliveries doses of 28 and 75 Gy from gamma-cell were used to achieve 2 and 8 Gy absorbed doses at the tumour sites.
  14. Dzul-Kifli NAC, Kechik MMA, Baqiah H, Shaari AH, Lim KP, Chen SK, et al.
    Nanomaterials (Basel), 2022 Nov 10;12(22).
    PMID: 36432245 DOI: 10.3390/nano12223958
    A bulk YBa2Cu3O7-δ (Y-123) superconductor synthesized by a thermal treatment method was added with different weight percentages (x = 0.0, 0.2, 1.0, 1.5, and 2.0 wt.%) of BiFeO3 (BFO) nanoparticle. X-ray diffraction (XRD), alternating current susceptibility (ACS), and field emission scanning electron microscopy (FESEM) were used to determine the properties of the samples. From the XRD results, all samples showed an orthorhombic crystal structure with a Pmmm space group. The sample x = 1.0 wt.% gave the highest value of Y-123. The high amounts of BFO degraded the crystallite size of the sample, showing that the addition did not promote the grain growth of Y-123. From ACS results, the Tc-onset value was shown to be enhanced by the addition of the BFO nanoparticle, where x = 1.5 wt.% gave the highest Tc value (91.91 K). The sample with 1.5 wt.% showed a high value of Tp (89.15 K). The FESEM analysis showed that the average grain size of the samples decreased as BFO was introduced. However, the small grain size was expected to fill in the boundary, which would help in enhancing the grain connectivity. Overall, the addition of the BFO nanoparticles in Y-123 helped to improve the superconducting properties, mainly for x = 1.5 wt.%.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links