Displaying all 6 publications

Abstract:
Sort:
  1. Kamarulzaman N, Kasim MF, Rusdi R
    Nanoscale Res Lett, 2015 Dec;10(1):1034.
    PMID: 26319225 DOI: 10.1186/s11671-015-1034-9
    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.
  2. Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, Kasim MF
    Mar Pollut Bull, 2013 Apr 15;69(1-2):55-66.
    PMID: 23452623 DOI: 10.1016/j.marpolbul.2013.01.009
    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia.
  3. Kasim MF, Darman AKAB, Yaakob MK, Badar N, Kamarulzaman N
    Phys Chem Chem Phys, 2019 Sep 11;21(35):19126-19146.
    PMID: 31432825 DOI: 10.1039/c9cp01664c
    In this study, nano- and microsized zinc oxide (ZnO) materials were doped with different manganese (Mn) contents (1-5 mol%) via a simple sol-gel method. The structural, morphological, optical and chemical environments of the materials were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). XRD results revealed that all synthesised materials were pure and single phased with a hexagonal wurtzite structure of ZnO. However, at a low annealing temperature, a nanorod-like shape can be obtained for all Zn(1-x)MnxO materials. In addition, EDX spectra confirmed the presence of Mn in the ZnO lattice and the atomic percentage was nearly equal to the calculated stoichiometry. UV-vis spectroscopy further revealed that materials in nano size exhibited band gap widening with an increase of the Mn content in the ZnO lattice. In contrast, micron state materials exhibited band gap narrowing with increasing Mn content up to 3% and then begin to widen when Mn > 3%. This is because the band gaps of these materials are affected by the dimensions of the crystals and the Mn content in the materials. Furthermore, XPS results revealed the existence of multiple states of Mn in all synthesised materials. By combining the information obtained from UV-vis and the XPS valence band, shifting in the valence band maximum (VBM) and conduction band minimum (CBM) was observed. Based on XPS results, the calculation of density functional theory studies revealed that the presence of Mn2+, Mn3+, and Mn4+ ions in the materials influences the band gap changes. It was also revealed that the nanosized Zn0.99Mn0.01O exhibited a higher photocatalytic activity than the other samples for degrading methylene blue (MB) dyes, owing to its smallest crystallite size.
  4. Matmin J, Jalani MA, Osman H, Omar Q, Ab'lah N, Elong K, et al.
    Nanomaterials (Basel), 2019 Feb 14;9(2).
    PMID: 30769911 DOI: 10.3390/nano9020264
    The photochemical synthesis of two-dimensional (2D) nanostructured from semiconductor materials is unique and challenging. We report, for the first time, the photochemical synthesis of 2D tin di/sulfide (PS-SnS₂-x, x = 0 or 1) from thioacetamide (TAA) and tin (IV) chloride in an aqueous system. The synthesized PS-SnS₂-x were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), a particle size distribution analyzer, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermal analysis, UV⁻Vis diffuse reflectance spectroscopy (DR UV⁻Vis), and photoluminescence (PL) spectroscopy. In this study, the PS-SnS₂-x showed hexagonally closed-packed crystals having nanosheets morphology with the average size of 870 nm. Furthermore, the nanosheets PS-SnS₂-x demonstrated reusable photo-degradation of methylene blue (MB) dye as a water pollutant, owing to the stable electronic conducting properties with estimated bandgap (Eg) at ~2.5 eV. Importantly, the study provides a green protocol by using photochemical synthesis to produce 2D nanosheets of semiconductor materials showing photo-degradation activity under sunlight response.
  5. Azfar AK, Kasim MF, Lokman IM, Rafaie HA, Mastuli MS
    R Soc Open Sci, 2020 Feb;7(2):191590.
    PMID: 32257324 DOI: 10.1098/rsos.191590
    Ag and Ni/ZnO photocatalyst nanostructures were successfully synthesized by a sol-gel method. In this work, the photocatalyst sample was systematically studied based on several factors affecting the performance of photocatalyst, which are size, morphology, band gap, textural properties and the number of active sites presence on the surface of the nanocatalyst. X-ray diffraction revealed that Ag/ZnO nanomaterials experienced multiple phases, meanwhile for Ni/ZnO the phase of nanomaterials were pure and single phase for stoichiometry less than 5%. Field emission scanning electron microscope (FESEM) showed almost all of the synthesized nanomaterials possessed a mixture of nanorods and spherical-like shape morphology. The Ag/ZnO showed high photocatalytic activity, producing at least 14th trials of nanocatalyst reusability on degradation of methyl orange under UV irradiation. Interestingly, this phenomenon was not observed in larger surface area of Ni/ZnO nanomaterials which supposedly favour photocatalytic activity, but instead producing poor photocatalytic performance. The main reasons were studied and exposed by temperature-programmed desorption of carbon dioxide (TPD-CO2) which showed that incorporation of Ag into ZnO lattice has enhanced the number of active sites on the surface of the nanocatalyst. Whereas incorporation of Ni in ZnO has lowered the number of active sites with respect to undoped ZnO. Active sites measurement is effective and significant, providing opportunities in developing an intensive study as an additional factor.
  6. Saaid FI, Kasim MF, Winie T, Elong KA, Azahidi A, Basri ND, et al.
    Heliyon, 2024 Jan 15;10(1):e23968.
    PMID: 38249110 DOI: 10.1016/j.heliyon.2023.e23968
    The demand for lithium-ion batteries (LIBs) has skyrocketed due to the fast-growing global electric vehicle (EV) market. The Ni-rich cathode materials are considered the most relevant next-generation positive-electrode materials for LIBs as they offer low cost and high energy density materials. However, by increasing Ni content in the cathode materials, the materials suffer from poor cycle ability, rate capability and thermal stability. Therefore, this review article focuses on recent advances in the controlled synthesis of lithium nickel manganese cobalt oxide (NMC). This work highlights the advantages and challenges associated with each synthesis method that has been used to produce Ni-rich materials. The crystallography and morphology obtained are discussed, as the performance of LIBs is highly dependent on these properties. To address the drawbacks of Ni-rich cathode materials, certain modifications such as ion doping, and surface coating have been pursued. The correlation between the synthesized and modified NMC materials with their electrochemical performances is summarized. Several gaps, challenges and guidelines are elucidated here in order to provide insights for facilitating research in high-performance cathode for lithium-ion batteries. Factors that govern the formation of nickel-rich layered cathode such as pH, reaction and calcination temperatures have been outlined and discussed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links