Displaying all 4 publications

Abstract:
Sort:
  1. Hamzah N, Kasmuri N, Tao W, Singhal N, Padhye L, Swift S
    Braz J Microbiol, 2020 Sep;51(3):1317-1326.
    PMID: 32399689 DOI: 10.1007/s42770-020-00295-0
    Bacterial adhesion on surfaces is an essential initial step in promoting bacterial mobilization for soil bioremediation process. Modification of the cell surface is required to improve the adhesion of bacteria. The modification of physicochemical properties by rhamnolipid to Pseudomonas putida KT2442, Rhodococcus erythropolis 3586 and Aspergillus brasiliensis ATCC 16404 strains was analysed using contact angle measurements. The surface energy and total free energy of adhesion were calculated to predict the adhesion of both bacteria strains on the A. brasiliensis surface. The study of bacterial adhesion was carried out to evaluate experimental value with the theoretical results. Bacteria and fungi physicochemical properties were modified significantly when treated with rhamnolipid. The adhesion rate of P. putida improved by 16% with the addition of rhamnolipid (below 1 CMC), while the increase of rhamnolipid concentration beyond 1 CMC did not further enhance the bacterial adhesion. The addition of rhamnolipid did not affect the adhesion of R. erythropolis. A good relationship has been obtained in which water contact angle and surface energy of fungal surfaces are the major factors contributing to the bacterial adhesion. The adhesion is mainly driven by acid-base interaction. This finding provides insight to the role of physicochemical properties in controlling the bacterial adhesion on the fungal surface to enhance bacteria transport in soil bioremediation.
  2. Zaini N, Kasmuri N, Mojiri A, Kindaichi T, Nayono SE
    Heliyon, 2024 Apr 15;10(7):e28849.
    PMID: 38601511 DOI: 10.1016/j.heliyon.2024.e28849
    In recent years, the production of plastic has been estimated to reach 300 million tonnes, and nearly the same amount has been dumped into the waters. This waste material causes long-term damage to the ecosystem, economic sectors, and aquatic environments. Fragmentation of plastics to microplastics has been detected in the world's oceans, which causes a serious global impact. It is found that most of this debris ends up in water environments. Hence, this research aims to review the microbial degradation of microplastic, especially in water bodies and coastal areas. Aerobic bacteria will oxidize and decompose the microplastic from this environment to produce nutrients. Furthermore, plants such as microalgae can employ this nutrient as an energy source, which is the byproduct of microplastic. This paper highlights the reduction of plastics in the environment, typically by ultraviolet reduction, mechanical abrasion processes, and utilization by microorganisms and microalgae. Further discussion on the utilization of microplastics in the current technologies comprised of mechanical, chemical, and biological methods focusing more on the microalgae and microbial pathways via fuel cells has been elaborated. It can be denoted in the fuel cell system, the microalgae are placed in the bio-cathode section, and the anode chamber consists of the colony of microorganisms. Hence, electric current from the fuel cell can be generated to produce clean energy. Thus, the investigation on the emerging technologies via fuel cell systems and the potential use of microplastic pollutants for consumption has been discussed in the paper. The biochemical changes of microplastic and the interaction of microalgae and bacteria towards the degradation pathways of microplastic are also being observed in this review.
  3. Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N
    Chemosphere, 2023 Apr 15;330:138666.
    PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666
    Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
  4. Mojiri A, Vishkaei MN, Zhou JL, Trzcinski AP, Lou Z, Kasmuri N, et al.
    Mar Environ Res, 2024 Feb;194:106343.
    PMID: 38215624 DOI: 10.1016/j.marenvres.2024.106343
    The increasing prevalence of microplastic pollution in aquatic environments has raised concerns about its impact on marine life. Among the different types of microplastics, polystyrene microplastics (PSMPs) are one of the most commonly detected in aquatic systems. Chaetoceros neogracile (diatom) is an essential part of the marine food web and plays a critical role in nutrient cycling. This study aimed to monitor the ecotoxicological impact of PSMPs on diatoms and observe enzymatic interactions through molecular docking simulations. Results showed that diatom growth decreased with increasing concentrations and exposure time to PSMPs, and the lowest photosynthetic efficiency (Fv/Fm) value was observed after 72 and 96 h of exposure to 200 mg L-1 of PSMPs. High concentrations of PSMPs led to a decrease in chlorophyll a content (up to 64.4%) and protein content (up to 35.5%). Molecular docking simulations revealed potential interactions between PSMPs and the extrinsic protein in photosystem II protein of diatoms, suggesting a strong affinity between the two. These findings indicate a detrimental effect of PSMPs on the growth and photosynthetic efficiency of diatoms and highlight the need for further research on the impact of microplastics on marine microbial processes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links