Displaying all 3 publications

Abstract:
Sort:
  1. Maurya R, Bhattacharjee G, Khambhati K, Gohil N, Singh P, Mani I, et al.
    Prog Mol Biol Transl Sci, 2023;196:261-270.
    PMID: 36813361 DOI: 10.1016/bs.pmbts.2022.09.006
    Amyloid precursor protein (APP) is a membrane protein expressed in several tissues. The occurrence of APP is predominant in synapses of nerve cells. It acts as a cell surface receptor and plays a vital role as a regulator of synapse formation, iron export and neural plasticity. It is encoded by the APP gene that is regulated by substrate presentation. APP is a precursor protein activated by proteolytic cleavage and thereby generating amyloid beta (Aβ) peptides which eventually form amyloid plaques that accumulate in Alzheimer's disease patients' brains. In this chapter, we highlight basic mechanism, structure, expression patterns and cleavage of amyloid plaques, and its diagnosis and potential treatment for Alzheimer's disease.
  2. Dixit R, Khambhati K, Supraja KV, Singh V, Lederer F, Show PL, et al.
    Bioresour Technol, 2023 Feb;370:128522.
    PMID: 36565819 DOI: 10.1016/j.biortech.2022.128522
    Machine learning (ML) applications have become ubiquitous in all fields of research including protein science and engineering. Apart from protein structure and mutation prediction, scientists are focusing on knowledge gaps with respect to the molecular mechanisms involved in protein binding and interactions with other components in the experimental setups or the human body. Researchers are working on several wet-lab techniques and generating data for a better understanding of concepts and mechanics involved. The information like biomolecular structure, binding affinities, structure fluctuations and movements are enormous which can be handled and analyzed by ML. Therefore, this review highlights the significance of ML in understanding the biomolecular interactions while assisting in various fields of research such as drug discovery, nanomedicine, nanotoxicity and material science. Hence, the way ahead would be to force hand-in hand of laboratory work and computational techniques.
  3. Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, et al.
    J Control Release, 2022 Feb 08.
    PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005
    A single gene mutation can cause a number of human diseases that affect quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links