Displaying all 13 publications

Abstract:
Sort:
  1. Rajasegaran P, Shazali N, Khan FAA
    Zoolog Sci, 2018 12 04;35(6):521-527.
    PMID: 30520355 DOI: 10.2108/zs170144
    Bats play crucial ecological and economic roles. However, this group of mammals is largely threatened due to anthropogenic activities inside or around their caves. In the present study, we investigate the effects of cave microclimate and physiological parameters on bat roost preference in Fairy Cave Nature Reserve (Fairy Cave NR). The microclimate and physiological parameters including temperature (°C), relative humidity (RH), light intensity (lux), air flow, passage dimension (m), roost height (m) and distance of roost from nearest entrance (m) were measured. Results showed that Emballonura monticola, Hipposideros diadema, Hipposideros larvatus and Penthetor lucasi roost in Fairy Cave NR. These bats can be distinguished by their colony size, roost posture, spatial arrangement and position of their roost. Penthetor lucasi makes up the largest colony in the bright zone, whereas E. monticola has the smallest colony, occupying the twilight zone throughout the cave. Members from the family Hipposideridae roost in the dark portion of the cave with zero light intensity. Emballonura monticola utilizes the hottest roost in the cave compared to the other microbats, whereas H. diadema inhabits the coolest roost. Physiological parameters such as light intensity, passage dimension, and distance from nearest entrance are significant parameters in roosting preferences. These parameters should be monitored to ensure the sustainability of not only the aforementioned species, but also other species that roost in nearby caves of Bau limestone (Wind Cave Nature Reserve: with 13 recorded species).
  2. Habeebur-Rahman SP, Noni V, Khan FAA, Tan CS
    Vet Med Sci, 2023 Nov;9(6):2634-2641.
    PMID: 37658663 DOI: 10.1002/vms3.1251
    BACKGROUND: Sarawak has one of the highest diversity of fruit bats species (family Pteropodidae) in Malaysia, with 19 species described. Most coronavirus (CoV) studies have mainly focused on insectivorous bats, resulting in a lack of information on CoVs present in frugivorous bats. In addition, bat CoV surveillance activities are lacking in Malaysia.

    OBJECTIVES: Our study focuses on determining the presence of bat CoVs in dusky fruit bat (Penthetor lucasi).

    METHODS: Guano samples belonging to P. lucasi were collected from Wind Cave Nature Reserve. The samples were screened for the presence of CoVs using validated hemi-nested consensus RNA-dependent RNA polymerase consensus primers.

    RESULTS: The bat CoV positivity rate was 38.5% (n = 15/39), with the viruses belonging to two subgenera: Alphacoronavirus (α-CoV) and Betacoronavirus (β-CoV). Phylogenetic analysis revealed that CoVs from 14 samples of P. lucasi belong to the genus α-CoV and may represent previously described genetic lineages in insectivorous bats in Wind Cave. However, only one sample of P. lucasi was detected with β-CoV which is closely related to subgenus Nobecovirus, which is commonly seen in frugivorous bats.

    CONCLUSIONS: This study provides the first available data on CoVs circulating in P. lucasi.

  3. Rovie-Ryan JJ, Khan FAA, Abdullah MT
    BMC Ecol Evol, 2021 02 15;21(1):26.
    PMID: 33588750 DOI: 10.1186/s12862-021-01757-1
    BACKGROUND: We analyzed a combined segment (2032-bp) of the sex-determining region and the testis-specific protein of the Y-chromosome (Y-DNA) gene to clarify the gene flow and phylogenetic relationships of the long-tailed macaques (Macaca fascicularis) in Southeast Asia. Phylogenetic relationships were constructed using the maximum likelihood, Bayesian inference, and the median-joining network from a total of 164 adult male M. fascicularis from 62 localities in Malaysia, including sequences from the other regions from previous studies.

    RESULTS: Based on Y-DNA, we confirm the presence of two lineages of M. fascicularis: the Indochinese and Sundaic lineages. The Indochinese lineage is represented by M. fascicularis located northwards of the Surat Thani-Krabi depression region and is introgressed by the Macaca mulatta Y-DNA. The Sundaic lineage is free from such hybridization event, thus defined as the original carrier of the M. fascicularis Y-DNA. We further revealed that the Sundaic lineage differentiated into two forms: the insular and the continental forms. The insular form, which represents the ancestral form of M. fascicularis, consists of two haplotypes: a single homogenous haplotype occupying the island of Borneo, Philippines, and southern Sumatra; and the Javan haplotype. The more diverse continental form consists of 17 haplotypes in which a dominant haplotype was shared by individuals from southern Thai Peninsular (south of Surat Thani-Krabi depression), Peninsular Malaysia, and Sumatra. Uniquely, Sumatra contains both the continental and insular Y-DNA which can be explained by a secondary contact hypothesis.

    CONCLUSIONS: Overall, the findings in this study are important: (1) to help authority particularly in Malaysia on the population management activities including translocation and culling of conflict M. fascicularis, (2) to identify the unknown origin of captive M. fascicularis used in biomedical research, and; (3) the separation between the continental and insular forms warrants for the treatment as separate management units.

  4. Baker RJ, Dickins B, Wickliffe JK, Khan FAA, Gaschak S, Makova KD, et al.
    Evol Appl, 2017 09;10(8):784-791.
    PMID: 29151870 DOI: 10.1111/eva.12475
    Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole (Myodes glareolus) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources.
  5. Mazlan N, Abd-Rahman MR, Tingga RCT, Abdullah MT, Khan FAA
    Folia Primatol., 2019;90(3):139-152.
    PMID: 30870855 DOI: 10.1159/000496022
    The proboscis monkey, Nasalis larvatus, is an endemic species to the island of Borneo. It is listed in the IUCN Red List as Endangered with a decreasing population trend. Nevertheless, biological information, especially on the genetic diversity of the species, is still incomplete. Its fragmented distribution poses difficulties in gathering genetic samples along with its widespread distribution across Borneo. This study aims to determine the genetic variation and structure of N. larvatus with an emphasis on Malaysian Borneo populations to elucidate its gene flow. The genetic variation and structure of N. larvatus were examined using 50 sequences of the 1,434-bp cytochrome oxidase subunit I (COI) gene region of mitochondrial DNA. The COI sequences revealed low genetic variation among N. larvatus populations in Malaysian Borneo. This low genetic variability could be the result of inbreeding pressure that may have occurred due to the absence of population expansion in this species over the last 30,000 years. This is supported in our analysis of molecular variance, which showed that groups of N. larvatus are significantly differentiated possibly due to natural geographic barriers. This study provides baseline information on the genetic diversity among proboscis monkey populations in Borneo for the future genetic assessment of the species.
  6. Wasti IG, Khan FAA, Bernard H, Hassan NH, Fayle T, Sathiya Seelan JS
    Mycology, 2021;12(3):188-202.
    PMID: 34552810 DOI: 10.1080/21501203.2021.1877204
    The island of Borneo is a global biodiversity hotspot. However, its limestone caves are one of its least-studied ecosystems. We report for the first time the fungal species richness, diversity and abundance from Madai cave, situated in north-eastern Borneo. Environmental samples from inside the cave environment were collected (guano, speleothem, and cavern water) via opportunistic sampling. The dilution method was performed for isolation of fungi. Morphological characterisation and molecular analysis of the ITS region were utilised for the identification of isolates. Fifty-five pure cultures of fungi were attained, comprising 32 species from 15 genera, eight orders, and two divisions, Ascomycota and Basidiomycota. Ascomycetes dominated the fungal composition, accounting for 53 (96%) out of 55 total isolates. Penicillium spp. accounted for more than 47.1% of fungal abundance in all sample types. However, Aspergillus spp. had the highest occurrence rate, being isolated from all environmental samples except one. Purpureocillium lilacinum was isolated most frequently, appearing in five separate samples across all three substrates. Annulohypoxylon nitens, Ganoderma australe, Pyrrhoderma noxium, and Xylaria feejeensis were discovered and reported for the first time from the cave environment. This study provides additional data for further research on the mycoflora of Sabah's various ecosystems, especially limestone caves.
  7. Nations JA, Giarla TC, Morni MA, William Dee J, Swanson MT, Hiller AE, et al.
    Zookeys, 2022;1137:17-31.
    PMID: 36760481 DOI: 10.3897/zookeys.1137.94217
    Although Borneo has received more attention from biologists than most other islands in the Malay Archipelago, many questions regarding the systematic relationships of Bornean mammals remain. Using next-generation sequencing technology, we obtained mitochondrial DNA sequences from the holotype of Suncusater, the only known specimen of this shrew. Several shrews collected recently in Sarawak are closely aligned, both morphologically and mitochondrially, with the holotype of S.ater. Phylogenetic analyses of mitochondrial sequences indicate that the S.ater holotype and new Sarawak specimens do not belong to the genus Suncus, but instead are most closely related to Palawanosorexmuscorum. Until now Palawanosorex has been known only from the neighboring Philippine island of Palawan. Additional sequences from nuclear ultra-conserved elements from the new Sarawak specimens strongly support a sister relationship to P.muscorum. We therefore transfer ater to Palawanosorex. The new specimens demonstrate that P.ater is more widespread in northern Borneo than previously recorded. Continued sampling of Bornean mammal diversity and reexamination of type material are critical in understanding the evolutionary history of the biologically rich Malay Archipelago.
  8. Ith S, Bumrungsri S, Furey NM, Bates PJ, Wonglapsuwan M, Khan FAA, et al.
    Zool Stud, 2015;54:e31.
    PMID: 31966118 DOI: 10.1186/s40555-015-0109-8
    BACKGROUND: Rhinolophusaffinis sensu lato isdistributed throughout Southeast Asia. The taxonomic status of forms attributed to the species is unclear due to the limited sample size with incomplete datasets and the taxa have high variation in morphology and echolocation call frequency. The aim of the study was to evaluate the distribution and taxonomic status of the subspecific forms of R. affinis in mainland Southeast Asia using large sample size with multiple datasets, including morphological, acoustic, and genetic data, both to elucidate taxonomic relationships and to test for congruence between these datasets.

    RESULTS: Three morphological forms were confirmed within the region; two concur with previously recognized taxa, namely R.affinis macrurus andR.affinis superans,and are strongly supported by morphological and genetic data. The third form is morphologically distinct, but its taxonomic status remains unclear. It is probable that this third form represents a distinct taxonomic entity; however, more data are required to confirm this. R. a. macrurus is known from the north of peninsular Thailand, Cambodia, Myanmar, Laos, and Vietnam (Indochinese subregion); R. a. superans is found throughout the Thai-Malay Peninsula (Sundaic subregion); whilst the third form is presently known from east central Myanmar (Shan state) and lower northern Vietnam (Nghe An Province).

    CONCLUSIONS: Our results suggest that at least three morphological forms occur in mainland Southeast Asia including one form which appears to be new to science. Echolocation call data for R. affinis are not a robust taxonomic tool as it shows a significant degree of variation which is not explained or supported by genetic and morphological findings. This study highlights significant levels of morphological variation in mainland Southeast Asia and provides an essential basis for further studies aiming to understand the population genetics, phylogeography, and taxonomy of the species.

  9. Wongwaiyut P, Karapan S, Saekong P, Francis CM, Guillén-Servent A, Senawi J, et al.
    Zootaxa, 2023 May 03;5277(3):401-442.
    PMID: 37518310 DOI: 10.11646/zootaxa.5277.3.1
    A new species of small Hipposideros in the bicolor group is described based on specimens from Thailand and Malaysia. It can be distinguished from other small Hipposideros in Southeast Asia by a combination of external, craniodental, and bacular morphology, as well as echolocation call frequency. The new species has a distinct rounded swelling on the internarial septum of the noseleaf, with a forearm length of 35.3-42.6 mm, greatest skull length of 15.94-17.90 mm, and a call frequency of maximum energy of 132.3-144.0 kHz. Although clearly different in morphology, the new species forms a sister clade with H. kunzi and H. bicolor in the phylogenetic trees based on mitochondrial DNA. In addition, this study reports echolocation and genetic data, with a confirmed record of H. einnaythu from Thailand for the first time. The new species most closely resembles H. einnaythu. However, it differs in the details of the noseleaf and craniodental morphology, and it has a genetic distance of 9.6% and 10.4% based on mitochondrial COI and ND2, respectively. It is currently documented from five localities: two in peninsular Thailand, at Hala Forest in Yala Province, and Phru To Daeng Swamp Forest in Narathiwat Province, one from peninsular Malaysia at Krau Wildlife Reserve in Pahang, and another two in Sabah, Malaysian Borneo at Gunung Kinabalu, and near Madai Caves. However, it is likely that many previous records of "H. cineraceus" from Borneo refer to this species. Most records of the species are from lowland evergreen rainforest, though one record from Sabah was at 1800m. The roosting sites for this new species are currently unknown. Future research with a combination of data such as genetics, echolocation and morphology would be necessary to further determine the species geographic distribution in Southeast Asia.
  10. Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, et al.
    mBio, 2021 Jan 12;12(1).
    PMID: 33436435 DOI: 10.1128/mBio.02698-20
    Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
  11. Uni S, Mat Udin AS, Agatsuma T, Junker K, Saijuntha W, Bunchom N, et al.
    Parasit Vectors, 2020 Feb 06;13(1):50.
    PMID: 32028994 DOI: 10.1186/s13071-020-3907-8
    BACKGROUND: The genus Onchocerca Diesing, 1841 includes species of medical importance, such as O. volvulus (Leuckart, 1893), which causes river blindness in the tropics. Recently, zoonotic onchocercosis has been reported in humans worldwide. In Japan, O. dewittei japonica Uni, Bain & Takaoka, 2001 from wild boars is a causative agent for this zoonosis. Many filarioid nematodes are infected with Wolbachia endosymbionts which exhibit various evolutionary relationships with their hosts. While investigating the filarial fauna of Borneo, we discovered an undescribed Onchocerca species in the bearded pig Sus barbatus Müller (Cetartiodactyla: Suidae).

    METHODS: We isolated Onchocerca specimens from bearded pigs and examined their morphology. For comparative material, we collected fresh specimens of O. d. dewittei Bain, Ramachandran, Petter & Mak, 1977 from banded pigs (S. scrofa vittatus Boie) in Peninsular Malaysia. Partial sequences of three different genes (two mitochondrial genes, cox1 and 12S rRNA, and one nuclear ITS region) of these filarioids were analysed. By multi-locus sequence analyses based on six genes (16S rDNA, ftsZ, dnaA, coxA, fbpA and gatB) of Wolbachia, we determined the supergroups in the specimens from bearded pigs and those of O. d. dewittei.

    RESULTS: Onchocerca borneensis Uni, Mat Udin & Takaoka n. sp. is described on the basis of morphological characteristics and its genetic divergence from congeners. Molecular characteristics of the new species revealed its close evolutionary relationship with O. d. dewittei. Calculated p-distance for the cox1 gene sequences between O. borneensis n. sp. and O. d. dewittei was 5.9%, while that between O. d. dewittei and O. d. japonica was 7.6%. No intraspecific genetic variation was found for the new species. Wolbachia strains identified in the new species and O. d. dewittei belonged to supergroup C and are closely related.

    CONCLUSIONS: Our molecular analyses of filarioids from Asian suids indicate that the new species is sister to O. d. dewittei. On the basis of its morphological and molecular characteristics, we propose to elevate O. d. japonica to species level as O. japonica Uni, Bain & Takaoka, 2001. Coevolutionary relationships exist between the Wolbachia strains and their filarial hosts in Borneo and Peninsular Malaysia.

  12. Görföl T, Huang JC, Csorba G, Győrössy D, Estók P, Kingston T, et al.
    PeerJ, 2022;10:e12445.
    PMID: 35070499 DOI: 10.7717/peerj.12445
    Recordings of bat echolocation and social calls are used for many research purposes from ecological studies to taxonomy. Effective use of these relies on identification of species from the recordings, but comparative recordings or detailed call descriptions to support identification are often lacking for areas with high biodiversity. The ChiroVox website (https://www.chirovox.org) was created to facilitate the sharing of bat sound recordings together with their metadata, including biodiversity data and recording circumstances. To date, more than 30 researchers have contributed over 3,900 recordings of nearly 200 species, making ChiroVox the largest open-access bat call library currently available. Each recording has a unique identifier that can be cited in publications; hence the acoustic analyses are repeatable. Most of the recordings available through the website are from bats whose species identities are confirmed, so they can be used to determine species in recordings where the bats were not captured or could not be identified. We hope that with the help of the bat researcher community, the website will grow rapidly and will serve as a solid source for bat acoustic research and monitoring.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links