Displaying all 3 publications

Abstract:
Sort:
  1. Pahlevanzadeh F, Bakhsheshi-Rad HR, Kharaziha M, Kasiri-Asgarani M, Omidi M, Razzaghi M, et al.
    J Mech Behav Biomed Mater, 2021 04;116:104320.
    PMID: 33571842 DOI: 10.1016/j.jmbbm.2021.104320
    Polymethyl methacrylate (PMMA) bone cements (BCs) have some drawbacks, including limited bioactivity and bone formation, as well as inferior mechanical properties, which may result in failure of the BC. To deal with the mentioned issues, novel bioactive polymethyl methacrylate-hardystonite (PMMA-HT) bone cement (BC) reinforced with 0.25 and 0.5 wt% of carbon nanotube (CNT) and reduced graphene oxide (rGO) was synthesized. In this context, the obtained bone cements were evaluated in terms of their mechanical and biological characteristics. The rGO reinforced bone cement exhibited better mechanical properties to the extent that the addition of 0.5 wt% of rGO where its compressive and tensile strength of bioactive PMMA-HT/rGO cement escalated from 92.07 ± 0.72 MPa, and 40.02 ± 0.71 MPa to 187.48 ± 5.79 MPa and 64.92 ± 0.75 MPa, respectively. Besides, the mechanisms of toughening, apatite formation, and cell interaction in CNT and rGO encapsulated PMMA have been studied. Results showed that the existence of CNT and rGO in BCs led to increase of MG63 osteoblast viability, and proliferation. However, rGO reinforced bone cement was more successful in supporting MG63 cell attachment compared to the CNT counterpart due to its wrinkled surface, which made a suitable substrate for cell adhesion. Based on the results, PMMA-HT/rGO can be a proper bone cement for the fixation of load-bearing implants.
  2. Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, et al.
    Bioresour Technol, 2023 Jan;368:128356.
    PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356
    The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
  3. Nazemi N, Rajabi N, Aslani Z, Kharaziha M, Kasiri-Asgarani M, Bakhsheshi-Rad HR, et al.
    J Biomater Appl, 2023 Jan;37(6):979-991.
    PMID: 36454961 DOI: 10.1177/08853282221140672
    Porous structure, biocompatibility and biodegradability, large surface area, and drug-loading ability are some remarkable properties of zeolite structure, making it a great possible option for bone tissue engineering. Herein, we evaluated the potential application of the ZSM-5 scaffold encapsulated GEN with high porosity structure and significant antibacterial properties. The space holder process has been employed as a new fabrication method with interconnected pores and suitable mechanical properties. In this study, for the first time, ZSM-5 scaffolds with GEN drug-loading were fabricated with the space holder method. The results showed excellent open porosity in the range of 70-78% for different GEN concentrations and appropriate mechanical properties. Apatite formation on the scaffold surface was determined with Simulation body fluid (SBF), and a new bone-like apatite layer shaping on all samples confirmed the in vitro bioactivity of ZSM-5-GEN scaffolds. Also, antibacterial properties were investigated against both gram-positive and gram-negative bacteria. The incorporation of various amounts of GEN increased the inhibition zone from 24 to 28 (for E. coli) and 26 to 37 (for S. aureus). In the culture with MG63 cells, great cell viability and high cell proliferation after 7 days of culture were determined.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links