Displaying all 4 publications

Abstract:
Sort:
  1. Khayoon WS, Saad B, Lee TP, Salleh B
    Food Chem, 2012 Jul 15;133(2):489-96.
    PMID: 25683424 DOI: 10.1016/j.foodchem.2012.01.010
    A simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE® multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith® performance RP-18e (100-4.6mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38-104.5% and RSDs were <4.4%. The method was applied to the determination of aflatoxins in peanut (9), rice (5) and chilli (10) samples. Liquid chromatography-tandem mass spectrometry analysis using triple quadruple analyser and operated in the multiple reaction monitoring modes on the contaminated samples was performed for confirmation.
  2. Lee TP, Saad B, Khayoon WS, Salleh B
    Talanta, 2012 Jan 15;88:129-35.
    PMID: 22265478 DOI: 10.1016/j.talanta.2011.10.021
    A simple, environmental friendly and selective sample preparation technique employing porous membrane protected micro-solid phase extraction (μ-SPE) loaded with molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) is described. After the extraction, the analyte was desorbed using ultrasonication and was analyzed using high performance liquid chromatography. Under the optimized conditions, the detection limits of OTA for coffee, grape juice and urine were 0.06 ng g(-1), 0.02 and 0.02 ng mL(-1), respectively while the quantification limits were 0.19 ng g(-1), 0.06 and 0.08 ng mL(-1), respectively. The recoveries of OTA from coffee spiked at 1, 25 and 50 ng g(-1), grape juice and urine samples at 1, 25 and 50 ng mL(-1) ranged from 90.6 to 101.5%. The proposed method was applied to thirty-eight samples of coffee, grape juice and urine and the presence of OTA was found in eighteen samples. The levels found, however, were all below the legal limits.
  3. Khayoon WS, Saad B, Salleh B, Manaf NH, Latiff AA
    Food Chem, 2014 Mar 15;147:287-94.
    PMID: 24206720 DOI: 10.1016/j.foodchem.2013.09.049
    A single step extraction-cleanup procedure using porous membrane-protected micro-solid phase extraction (μ-SPE) in conjunction with liquid chromatography-tandem mass spectrometry for the extraction and determination of aflatoxins (AFs) B1, B2, G1 and G2 from food was successfully developed. After the extraction, AFs were desorbed from the μ-SPE device by ultrasonication using acetonitrile. The optimum extraction conditions were: sorbent material, C8; sorbent mass, 20mg; extraction time, 90 min; stirring speed, 1,000 rpm; sample volume, 10 mL; desorption solvent, acetonitrile; solvent volume, 350 μL and ultrasonication period, 25 min without salt addition. Under the optimum conditions, enrichment factor of 11, 9, 9 and 10 for AFG2, AFG1, AFB2 and AFB1, respectively were achieved. Good linearity and correlation coefficient was obtained over the concentration range of 0.4-50 ng g(-1) (r(2) 0.9988-0.9999). Good recoveries for AFs ranging from 86.0-109% were obtained. The method was applied to 40 samples involving malt beverage (19) and canned coffee (21). No AFs were detected in the selected samples.
  4. Khayoon WS, Saad B, Salleh B, Ismail NA, Abdul Manaf NH, Abdul Latiff A
    Anal Chim Acta, 2010 Oct 29;679(1-2):91-7.
    PMID: 20951862 DOI: 10.1016/j.aca.2010.09.008
    The development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B(1) and fumonisin B(2) by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C(18) solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith(®) RP-18e column (100 mm × 4.6 mm) at 30 °C and eluted with a mobile phase of a mixture of methanol and phosphate buffer pH 3.35 (78:22, v/v) at a flow rate of 1.0 mL min(-1). The fumonisins separation was achieved in about 4 min, compared to approximately 20 min by using a C(18) particle-packed column. The fluorescence excitation and emission were at 335 nm and 440 nm, respectively. The limits of detections were 0.01-0.04 μg g(-1) fumonisin B(1) and fumonisin B(2), respectively. Good recoveries were found for spiked samples (0.1, 0.5, 1.5 μg g(-1) fumonisins B(1) and B(2)), ranging from 84.0 to 106.0% for fumonisin B(1) and from 81.0 to 103.0% for fumonisin B(2). Fifty-three samples were analyzed including 39 food and feeds and 14 inoculated corn and rice. Results show that 12.8% of the food and feed samples were contaminated with fumonisin B(1) (range, 0.01-0.51 μg g(-1)) and fumonisin B(2) (0.05 μg g(-1)). The total fumonisins in these samples however, do not exceed the legal limits established by the European Union of 0.8 μg g(-1). Of the 14 inoculated samples, 57.1% contained fumonisin B(1) (0.16-41.0 μg g(-1)) and fumonisin B(2) (range, 0.22-50.0 μg g(-1)). Positive confirmation of selected samples was carried out using liquid chromatography-tandem mass spectrometry, using triple quadrupole analyzer and operated in the multiple reaction monitoring mode.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links