METHODS: This systematic review was performed to determine the effect of ACT on insomnia and sleep quality. To collect articles, the PubMed, Web of Science (WOS), Cochrane library, Embase, Scopus, Science Direct, ProQuest, Mag Iran, Irandoc, and Google Scholar databases were searched, without a lower time-limit, and until April 2020.
RESULTS: Related articles were derived from 9 research repositories, with no lower time-limit and until April 2020. After assessing 1409 collected studies, 278 repetitive studies were excluded. Moreover, following the primary and secondary evaluations of the remaining articles, 1112 other studies were removed, and finally a total of 19 intervention studies were included in the systematic review process. Within the remaining articles, a sample of 1577 people had been assessed for insomnia and sleep quality.
CONCLUSION: The results of this study indicate that ACT has a significant effect on primary and comorbid insomnia and sleep quality, and therefore, it can be used as an appropriate treatment method to control and improve insomnia.
METHODS: To find related studies, the WoS, PubMed, ScienceDirect, Scopus, Embase, and Google Scholar databases were systematically searched without a lower time limit. Heterogeneity among the identified studies was checked using the I2 index, and the Begg and Mazumdar correlation test examined the existence of published bias. Comprehensive Meta-Analysis (v.2) software was adopted to analyze the data.
RESULTS: In the review of 18 studies with a sample size of 5,840, the overall pooled prevalence of sleep disorders among AS patients based on the random effects method was found to be 53% (95% CI: 44.9-61). The highest and lowest prevalence was in Egypt at 90% and Australia at 19.2%, respectively. Our meta-regression results show that with the increase in 'sample size' and 'year of publication', the overall prevalence of sleep disorders in patients with AS decreases (p
METHODS: In this research work, the systematic review, meta-analysis and meta-regression approaches are used to approximate the prevalence of stress, anxiety and depression within front-line healthcare workers caring for COVID-19 patients. The keywords of prevalence, anxiety, stress, depression, psychopathy, mental illness, mental disorder, doctor, physician, nurse, hospital staff, 2019-nCoV, COVID-19, SARS-CoV-2 and Coronaviruses were used for searching the SID, MagIran, IranMedex, IranDoc, ScienceDirect, Embase, Scopus, PubMed, Web of Science (ISI) and Google Scholar databases. The search process was conducted in December 2019 to June 2020. In order to amalgamate and analyze the reported results within the collected studies, the random effects model is used. The heterogeneity of the studies is assessed using the I2 index. Lastly, the data analysis is performed within the Comprehensive Meta-Analysis software.
RESULTS: Of the 29 studies with a total sample size of 22,380, 21 papers have reported the prevalence of depression, 23 have reported the prevalence of anxiety, and 9 studies have reported the prevalence of stress. The prevalence of depression is 24.3% (18% CI 18.2-31.6%), the prevalence of anxiety is 25.8% (95% CI 20.5-31.9%), and the prevalence of stress is 45% (95% CI 24.3-67.5%) among the hospitals' Hospital staff caring for the COVID-19 patients. According to the results of meta-regression analysis, with increasing the sample size, the prevalence of depression and anxiety decreased, and this was statistically significant (P
METHOD: A systematic review and metanalysis was conducted in accordance with the PRISMA criteria. The PubMed, Scopus, Science direct, Web of science, CINHAL, Medline, and Google Scholar databases were searched with no lower time-limt and until 24 June 2020. The heterogeneity of the studies was measured using I2 test and the publication bias was assessed by the Egger's test at the significance level of 0.05.
RESULTS: The I2 test was used to evaluate the heterogeneity of the selected studies, based on the results of I2 test, the prevalence of sleep disturbances in nurses and physicians is I2: 97.4% and I2: 97.3% respectively. After following the systematic review processes, 7 cross-sectional studies were selected for meta-analysis. Six studies with the sample size of 3745 nurses were examined in and the prevalence of sleep disturbances was approximated to be 34.8% (95% CI: 24.8-46.4%). The prevalence of sleep disturbances in physicians was also measured in 5 studies with the sample size of 2123 physicians. According to the results, the prevalence of sleep disturbances in physicians caring for the COVID-19 patients was reported to be 41.6% (95% CI: 27.7-57%).
CONCLUSION: Healthcare workers, as the front line of the fight against COVID-19, are more vulnerable to the harmful effects of this disease than other groups in society. Increasing workplace stress increases sleep disturbances in the medical staff, especially nurses and physicians. In other words, increased stress due to the exposure to COVID-19 increases the prevalence of sleep disturbances in nurses and physicians. Therefore, it is important for health policymakers to provide solutions and interventions to reduce the workplace stress and pressures on medical staff.
METHODS: TIs and deaths were estimated by age, sex, country, and year using Cause of Death Ensemble modelling (CODEm) and DisMod-MR 2.1. Disability-adjusted life years (DALYs), which quantify the total burden of years lost due to premature death or disability, were also estimated per 100000 population. All estimates were reported along with their corresponding 95% uncertainty intervals (UIs).
RESULTS: In 2017, there were 5.5 million (UI 4.9-6.2) transport-related incident cases in the EMR - a substantial increase from 1990 (2.8 million; UI 2.5-3.1). The age-standardized incidence rate for the EMR in 2017 was 787 (UI 705.5-876.2) per 100000, which has not changed significantly since 1990 (-0.9%; UI -4.7 to 3). These rates differed remarkably between countries, such that Oman (1303.9; UI 1167.3-1441.5) and Palestine (486.5; UI 434.5-545.9) had the highest and lowest age-standardized incidence rates per 100000, respectively. In 2017, there were 185.3 thousand (UI 170.8-200.6) transport-related fatalities in the EMR - a substantial increase since 1990 (140.4 thousand; UI 118.7-156.9). The age-standardized death rate for the EMR in 2017 was 29.5 (UI 27.1-31.9) per 100000, which was 30.5% lower than that found in 1990 (42.5; UI 36.8-47.3). In 2017, Somalia (54; UI 30-77.4) and Lebanon (7.1; UI 4.8-8.6) had the highest and lowest age-standardized death rates per 100,000, respectively. The age-standardised DALY rate for the EMR in 2017 was 1,528.8 (UI 1412.5-1651.3) per 100000, which was 34.4% lower than that found in 1990 (2,331.3; UI 1,993.1-2,589.9). In 2017, the highest DALY rate was found in Pakistan (3454121; UI 2297890- 4342908) and the lowest was found in Bahrain (8616; UI 7670-9751).
CONCLUSION: The present study shows that while road traffic has become relatively safer (measured by deaths and DALYs per 100000 population), the number of transport-related fatalities in the EMR is growing and needs to be addressed urgently.
METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.
RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.
CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
METHODS: We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).
FINDINGS: In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).
INTERPRETATION: Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.