Displaying all 9 publications

Abstract:
Sort:
  1. Mookiah MR, Acharya UR, Chandran V, Martis RJ, Tan JH, Koh JE, et al.
    Med Biol Eng Comput, 2015 Dec;53(12):1319-31.
    PMID: 25894464 DOI: 10.1007/s11517-015-1278-7
    Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39% for MESSIDOR dataset and 95.93 and 93.33% for local dataset, respectively.
  2. Acharya UR, Sudarshan VK, Rong SQ, Tan Z, Lim CM, Koh JE, et al.
    Comput Biol Med, 2017 06 01;85:33-42.
    PMID: 28433870 DOI: 10.1016/j.compbiomed.2017.04.013
    An accurate detection of preterm labor and the risk of preterm delivery before 37 weeks of gestational age is crucial to increase the chance of survival rate for both mother and the infant. Thus, the uterine contractions measured using uterine electromyogram (EMG) or electro hysterogram (EHG) need to have high sensitivity in the detection of true preterm labor signs. However, visual observation and manual interpretation of EHG signals at the time of emergency situation may lead to errors. Therefore, the employment of computer-based approaches can assist in fast and accurate detection during the emergency situation. This work proposes a novel algorithm using empirical mode decomposition (EMD) combined with wavelet packet decomposition (WPD), for automated prediction of pregnant women going to have premature delivery by using uterine EMG signals. The EMD is performed up to 11 levels on the normal and preterm EHG signals to obtain the different intrinsic mode functions (IMFs). These IMFs are further subjected to 6 levels of WPD and from the obtained coefficients, eight different features are extracted. From these extracted features, only the significant features are selected using particle swarm optimization (PSO) method and selected features are ranked by Bhattacharyya technique. All the ranked features are fed to support vector machine (SVM) classifier for automated differentiation and achieved an accuracy of 96.25%, sensitivity of 95.08%, and specificity of 97.33% using only ten EHG signal features. Our proposed algorithm can be used in gynecology departments of hospitals to predict the preterm or normal delivery of pregnant women.
  3. Adam M, Oh SL, Sudarshan VK, Koh JE, Hagiwara Y, Tan JH, et al.
    Comput Methods Programs Biomed, 2018 Jul;161:133-143.
    PMID: 29852956 DOI: 10.1016/j.cmpb.2018.04.018
    Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. The rising mortality rate can be reduced by early detection and treatment interventions. Clinically, electrocardiogram (ECG) signal provides useful information about the cardiac abnormalities and hence employed as a diagnostic modality for the detection of various CVDs. However, subtle changes in these time series indicate a particular disease. Therefore, it may be monotonous, time-consuming and stressful to inspect these ECG beats manually. In order to overcome this limitation of manual ECG signal analysis, this paper uses a novel discrete wavelet transform (DWT) method combined with nonlinear features for automated characterization of CVDs. ECG signals of normal, and dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and myocardial infarction (MI) are subjected to five levels of DWT. Relative wavelet of four nonlinear features such as fuzzy entropy, sample entropy, fractal dimension and signal energy are extracted from the DWT coefficients. These features are fed to sequential forward selection (SFS) technique and then ranked using ReliefF method. Our proposed methodology achieved maximum classification accuracy (acc) of 99.27%, sensitivity (sen) of 99.74%, and specificity (spec) of 98.08% with K-nearest neighbor (kNN) classifier using 15 features ranked by the ReliefF method. Our proposed methodology can be used by clinical staff to make faster and accurate diagnosis of CVDs. Thus, the chances of survival can be significantly increased by early detection and treatment of CVDs.
  4. Acharya UR, Mookiah MR, Koh JE, Tan JH, Bhandary SV, Rao AK, et al.
    Comput Biol Med, 2016 08 01;75:54-62.
    PMID: 27253617 DOI: 10.1016/j.compbiomed.2016.04.015
    Posterior Segment Eye Diseases (PSED) namely Diabetic Retinopathy (DR), glaucoma and Age-related Macular Degeneration (AMD) are the prime causes of vision loss globally. Vision loss can be prevented, if these diseases are detected at an early stage. Structural abnormalities such as changes in cup-to-disc ratio, Hard Exudates (HE), drusen, Microaneurysms (MA), Cotton Wool Spots (CWS), Haemorrhages (HA), Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in PSED can be identified by manual examination of fundus images by clinicians. However, manual screening is labour-intensive, tiresome and time consuming. Hence, there is a need to automate the eye screening. In this work Bi-dimensional Empirical Mode Decomposition (BEMD) technique is used to decompose fundus images into 2D Intrinsic Mode Functions (IMFs) to capture variations in the pixels due to morphological changes. Further, various entropy namely Renyi, Fuzzy, Shannon, Vajda, Kapur and Yager and energy features are extracted from IMFs. These extracted features are ranked using Chernoff Bound and Bhattacharyya Distance (CBBD), Kullback-Leibler Divergence (KLD), Fuzzy-minimum Redundancy Maximum Relevance (FmRMR), Wilcoxon, Receiver Operating Characteristics Curve (ROC) and t-test methods. Further, these ranked features are fed to Support Vector Machine (SVM) classifier to classify normal and abnormal (DR, AMD and glaucoma) classes. The performance of the proposed eye screening system is evaluated using 800 (Normal=400 and Abnormal=400) digital fundus images and 10-fold cross validation method. Our proposed system automatically identifies normal and abnormal classes with an average accuracy of 88.63%, sensitivity of 86.25% and specificity of 91% using 17 optimal features ranked using CBBD and SVM-Radial Basis Function (RBF) classifier. Moreover, a novel Retinal Risk Index (RRI) is developed using two significant features to distinguish two classes using single number. Such a system helps to reduce eye screening time in polyclinics or community-based mass screening. They will refer the patients to main hospitals only if the diagnosis belong to the abnormal class. Hence, the main hospitals will not be unnecessarily crowded and doctors can devote their time for other urgent cases.
  5. Mookiah MR, Acharya UR, Koh JE, Chandran V, Chua CK, Tan JH, et al.
    Comput Biol Med, 2014 Oct;53:55-64.
    PMID: 25127409 DOI: 10.1016/j.compbiomed.2014.07.015
    Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback-Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
  6. Acharya UR, Mookiah MR, Koh JE, Tan JH, Noronha K, Bhandary SV, et al.
    Comput Biol Med, 2016 06 01;73:131-40.
    PMID: 27107676 DOI: 10.1016/j.compbiomed.2016.04.009
    Age-related Macular Degeneration (AMD) affects the central vision of aged people. It can be diagnosed due to the presence of drusen, Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in the fundus images. It is labor intensive and time-consuming for the ophthalmologists to screen these images. An automated digital fundus photography based screening system can overcome these drawbacks. Such a safe, non-contact and cost-effective platform can be used as a screening system for dry AMD. In this paper, we are proposing a novel algorithm using Radon Transform (RT), Discrete Wavelet Transform (DWT) coupled with Locality Sensitive Discriminant Analysis (LSDA) for automated diagnosis of AMD. First the image is subjected to RT followed by DWT. The extracted features are subjected to dimension reduction using LSDA and ranked using t-test. The performance of various supervised classifiers namely Decision Tree (DT), Support Vector Machine (SVM), Probabilistic Neural Network (PNN) and k-Nearest Neighbor (k-NN) are compared to automatically discriminate to normal and AMD classes using ranked LSDA components. The proposed approach is evaluated using private and public datasets such as ARIA and STARE. The highest classification accuracy of 99.49%, 96.89% and 100% are reported for private, ARIA and STARE datasets. Also, AMD index is devised using two LSDA components to distinguish two classes accurately. Hence, this proposed system can be extended for mass AMD screening.
  7. Mookiah MR, Acharya UR, Fujita H, Koh JE, Tan JH, Noronha K, et al.
    Comput Biol Med, 2015 Aug;63:208-18.
    PMID: 26093788 DOI: 10.1016/j.compbiomed.2015.05.019
    Age-related Macular Degeneration (AMD) is an irreversible and chronic medical condition characterized by drusen, Choroidal Neovascularization (CNV) and Geographic Atrophy (GA). AMD is one of the major causes of visual loss among elderly people. It is caused by the degeneration of cells in the macula which is responsible for central vision. AMD can be dry or wet type, however dry AMD is most common. It is classified into early, intermediate and late AMD. The early detection and treatment may help one to stop the progression of the disease. Automated AMD diagnosis may reduce the screening time of the clinicians. In this work, we have introduced LCP to characterize normal and AMD classes using fundus images. Linear Configuration Coefficients (CC) and Pattern Occurrence (PO) features are extracted from fundus images. These extracted features are ranked using p-value of the t-test and fed to various supervised classifiers viz. Decision Tree (DT), Nearest Neighbour (k-NN), Naive Bayes (NB), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to classify normal and AMD classes. The performance of the system is evaluated using both private (Kasturba Medical Hospital, Manipal, India) and public domain datasets viz. Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) using ten-fold cross validation. The proposed approach yielded best performance with a highest average accuracy of 97.78%, sensitivity of 98.00% and specificity of 97.50% for STARE dataset using 22 significant features. Hence, this system can be used as an aiding tool to the clinicians during mass eye screening programs to diagnose AMD.
  8. Rajendra Acharya U, Meiburger KM, Wei Koh JE, Vicnesh J, Ciaccio EJ, Shu Lih O, et al.
    Artif Intell Med, 2019 09;100:101724.
    PMID: 31607348 DOI: 10.1016/j.artmed.2019.101724
    Cardiovascular diseases are the primary cause of death globally. These are often associated with atherosclerosis. This inflammation process triggers important variations in the coronary arteries (CA) and can lead to coronary artery disease (CAD). The presence of CA calcification (CAC) has recently been shown to be a strong predictor of CAD. In this clinical setting, computed tomography angiography (CTA) has begun to play a crucial role as a non-intrusive imaging method to characterize and study CA plaques. Herein, we describe an automated algorithm to classify plaque as either normal, calcified, or non-calcified using 2646 CTA images acquired from 73 patients. The automated technique is based on various features that are extracted from the Gabor transform of the acquired CTA images. Specifically, seven features are extracted from the Gabor coefficients : energy, and Kapur, Max, Rényi, Shannon, Vajda, and Yager entropies. The features were then ordered based on the F-value and input to numerous classification methods to achieve the best classification accuracy with the least number of features. Moreover, two well-known feature reduction techniques were employed, and the features acquired were also ranked according to F-value and input to several classifiers. The best classification results were obtained using all computed features without the employment of feature reduction, using a probabilistic neural network. An accuracy, positive predictive value, sensitivity, and specificity of 89.09%, 91.70%, 91.83% and 83.70% was obtained, respectively. Based on these results, it is evident that the technique can be helpful in the automated classification of plaques present in CTA images, and may become an important tool to reduce procedural costs and patient radiation dose. This could also aid clinicians in plaque diagnostics.
  9. Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JE, Jen Hong T, et al.
    Comput Biol Med, 2016 12 01;79:250-258.
    PMID: 27825038 DOI: 10.1016/j.compbiomed.2016.10.022
    Fatty liver disease (FLD) is reversible disease and can be treated, if it is identified at an early stage. However, if diagnosed at the later stage, it can progress to an advanced liver disease such as cirrhosis which may ultimately lead to death. Therefore, it is essential to detect it at an early stage before the disease progresses to an irreversible stage. Several non-invasive computer-aided techniques are proposed to assist in the early detection of FLD and cirrhosis using ultrasound images. In this work, we are proposing an algorithm to discriminate automatically the normal, FLD and cirrhosis ultrasound images using curvelet transform (CT) method. Higher order spectra (HOS) bispectrum, HOS phase, fuzzy, Kapoor, max, Renyi, Shannon, Vajda and Yager entropies are extracted from CT coefficients. These extracted features are subjected to locality sensitive discriminant analysis (LSDA) feature reduction method. Then these LSDA coefficients ranked based on F-value are fed to different classifiers to choose the best performing classifier using minimum number of features. Our proposed technique can characterize normal, FLD and cirrhosis using probabilistic neural network (PNN) classifier with an accuracy of 97.33%, specificity of 100.00% and sensitivity of 96.00% using only six features. In addition, these chosen features are used to develop a liver disease index (LDI) to differentiate the normal, FLD and cirrhosis classes using a single number. This can significantly help the radiologists to discriminate FLD and cirrhosis in their routine liver screening.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links