METHODOLOGY: One hundred and twenty clinical isolates of S. pneumoniae were obtained from patients of University Malaya Medical Centre (UMMC). The strains were screened using a multiplex real-time PCR method for the presence of alterations in the genes encoding the penicillin binding proteins: pbp2b, macrolide resistance determinant ermB and the pneumolysin gene, ply. Dual-labelled Taqman probes were used in the real-time detection method comprising three different genes labeled with individual fluorophores at different wavelengths. One hundred and twenty isolates from bacterial cultures and isolates directly from blood cultures samples were analyzed using this assay.
RESULTS: A multiplex PCR comprising the antibiotic resistance genes, ermB and and pneumolysin gene (ply), a S. pneumoniae species specific gene, was developed to characterize strains of S. pneumoniae. Out of the 120 pneumococcal isolates, 58 strains were categorized as Penicillin Sensitive Streptococcus pneumoniae (PSSP), 36 as Penicillin Intermediate Streptococcus pneumoniae (PISP) and 26 as Penicillin Resistant Streptococcus pneumoniae (PRSP). All the 58 PSSP strains harboured the pbp2b gene while the 36 PISP and 26 PRSP strains did not harbour this gene, thus suggesting reduced susceptibility to penicillin. Resistance to erythromycin was observed in 47 of the pneumococcal strains while 15 and 58 were intermediate and sensitive to this drug respectively. Susceptibility testing to other beta-lactams (CTX and CRO) also showed reduced susceptibility among the strains within the PISP and PRSP groups but most PSSP strains were sensitive to other antibiotics.
CONCLUSION: The characterization of pneumococcal isolates for penicillin and erythromycin resistance genes could be useful to predict the susceptibility of these isolates to other antibiotics, especially beta-lactams drugs. We have developed an assay with a shorter turnaround time to determine the species and resistance profile of Streptococcus pneumoniae with respect to penicillin and macrolides using the Real Time PCR format with fluorescent labeled Taqman probes, hence facilitating earlier and more definitive antimicrobial therapy which may lead to better patient management.
Materials and Methods: This in vivo study was conducted on 80 participants with an age range of 15-40 years. Thirty were included as controls and 50 participants were treated with fixed orthodontic appliances. Saliva and blood samples were collected at five different periods, before insertion of fixed orthodontic appliance and at 1 week, 3 months, 1 year, and 1.5 years after insertion of appliance, respectively. The metal ion content in the samples were analyzed by atomic absorption spectrophotometry. Mean levels of nickel, chromium, and zinc in saliva and serum were compared between groups using independent sample t-test and before and after results using paired t-test. P < 0.05 was considered as statistically significant.
Results: At the end of 1.5 years, the mean salivary levels of nickel, chromium, and zinc in controls were 5.02 ppb, 1.27 ppb, and 10.24 ppb, respectively, as compared to 67 ppb, 30.8 ppb, and 164.7 ppb at the end of 1.5 years. This was statistically significant with P < 0.001. A significant increase in the metal ion levels were seen in participants with before and after insertion of appliance (P < 0.001).
Conclusion: Orthodontic appliances do release considerable amounts of metal ions such as nickel, chromium, and zinc in saliva and serum. However, it was within permissible levels and did not reach toxic levels.