Displaying all 6 publications

Abstract:
Sort:
  1. Low CF, Md Yusoff MR, Kuppusamy G, Ahmad Nadzri NF
    J Fish Dis, 2018 Dec;41(12):1771-1781.
    PMID: 30270534 DOI: 10.1111/jfd.12895
    Macrobrachium rosenbergii nodavirus (MrNV) has been threatening the giant freshwater prawn aquaculture since 1997, causing white tail disease in the prawn species that leads to 100% lethality of the infected postlarvae. Comprehension of the viral infectivity and pathogenesis at molecular biology level has recently resolved the viral capsid protein and evidenced the significant difference in the viral structural protein compared to other nodaviruses that infect fish and insect. Cumulative researches have remarked the proposal to assert MrNV as a member of new genus, gammanodavirus to the Nodaviridae family. The significance of molecular biology in MrNV infection is being highlighted in this current review, revolving the viral life cycle from virus binding and entry into host, virus replication in host cell, to virus assembly and release. The current review also highlights the emerging aptamers technology that is also known as synthetic antibody, its application in disease diagnosis, and its prophylactic and therapeutic properties. The future perspective of synthetic virology technology in understanding viral pathogenesis, as well as its potential in viral vaccine development, is also discussed.
  2. Kuppusamy G, Kong CK, Segaran GC, Tarmalingam E, Herriman M, Ismail MF, et al.
    Biology (Basel), 2020 Sep 05;9(9).
    PMID: 32899563 DOI: 10.3390/biology9090274
    Black soldier fly (BSF) larva is an attractive animal feed replacer due to its noticeable nutritional content. However, the conventional rearing method often resulted in BSF with undesirably high heavy metal residues that are harmful to animals. In this work, putrefied Sesbania grandiflora (S. Grandiflora) leaves were employed as feed to rear BSF larvae. The resultant BSF prepupae were found to contain 43.5% protein and 16.7% fat, reflecting a comparable protein content and a 2-fold reduction in crude fat than those reared using conventional kitchen waste. Moreover, high quantities of arginine (25.4 g/kg dry matter basis (DM)), carnitine (32.9 g/kg DM), and short-chain fatty acids, including lauric (40.00%), palmitic (19.20%), and oleic (12.10%) acids, have also been noticed in the BSF prepupae. Furthermore, the BSF larvae have been recorded with 0.185 mg/kg chromium, 0.380 mg/kg selenium, and mercury below the detection limit, which is far lower than those reared using conventional kitchen and agricultural wastes (≈1.7 mg/kg chromium, 1.2 mg/kg selenium, and 0.2 mg/kg mercury). Overall, the study shows that the nutritional quality of BSF prepupae is extensively improved when using S. Grandiflora as their feed. The resultant BSF prepupae may serve as an alternative feed for animal rearing.
  3. Issac PK, Lite C, Guru A, Velayutham M, Kuppusamy G, Saraswathi NT, et al.
    Fish Physiol Biochem, 2021 Apr;47(2):293-311.
    PMID: 33394283 DOI: 10.1007/s10695-020-00912-7
    This study reports the antioxidant property and molecular mechanism of a tryptophan-tagged peptide derived from a teleost fish Channa striatus of serine threonine-protein kinase (STPK). The peptide was tagged with tryptophan to enhance the antioxidant property of STPK and named as IW13. The antioxidant activity of IW13 peptide was investigated using in vitro methods such as DPPH, ABTS, superoxide anion radical scavenging and hydrogen peroxide scavenging assay. Furthermore, to investigate the toxicity and dose response of IW13 peptide on antioxidant defence in vitro, L6 myotubes were induced with generic oxidative stress due to exposure of hydrogen peroxide (H2O2). IW13 peptide exposure was found to be non-cytotoxic to L6 cells in the tested concentration (10, 20, 30, 40 and 50 μM). Also, the pre-treatment of IW13 peptide decreased the lipid peroxidation level and increased glutathione enzyme activity. IW13 peptide treatment upregulated the antioxidant enzyme genes: GPx (glutathione peroxidase), GST (glutathione S transferase) and GCS (glutamine cysteine synthase), in vitro in L6 myotubes and in vivo in zebrafish larvae against the H2O2-induced oxidative stress. The results demonstrated that IW13 renders protection against the H2O2-induced oxidative stress through a cellular antioxidant defence mechanism by upregulating the gene expression, thus enhancing the antioxidant activity in the cellular or organismal level. The findings exhibited that the tryptophan-tagged IW13 peptide from STPK of C. striatus could be a promising candidate for the treatment of oxidative stress-associated diseases.
  4. Gregory PJ, Mayes S, Hui CH, Jahanshiri E, Julkifle A, Kuppusamy G, et al.
    Planta, 2019 Sep;250(3):979-988.
    PMID: 31250097 DOI: 10.1007/s00425-019-03179-2
    MAIN CONCLUSION: Crops For the Future (CFF), as an entity, has established a broad range of research activities to promote the improvement and adoption of currently underutilised crops. This paper summarises selected research activities at Crops For the Future (CFF) in pursuit of its mission 'to develop solutions for diversifying future agriculture using underutilised crops'. CFF is a research company focussed on the improvement of underutilised crops, so that they might be grown and consumed more widely with benefits to human food and nutritional security; its founding guarantors were the Government of Malaysia and the University of Nottingham. From its base in Malaysia, it engages in research around the world with a focus on species and system diversification. CFF has adopted a food system approach that adds value by delivering prototype food, feed and knowledge products. Bambara groundnut (Vigna subterranea) was adopted as an exemplar crop around which to develop CFF's food system approach with emphasis on the short-day photoperiod requirement for pod-filling and the hard-to-cook trait. Selective breeding has allowed the development of lines that are less susceptible to photoperiod but also provided a range of tools and approaches that are now being exploited in other crops such as winged bean (Psophocarpus tetragonolobus), amaranth (Amaranthus spp.), moringa (Moringa oleifera) and proso (Panicum miliaceum) and foxtail (Setaria italica) millets. CFF has developed and tested new food products and demonstrated that several crops can be used as feed for black soldier fly which can, in turn, be used to feed fish thereby reducing the need for fishmeal. Information about underutilised crops is widely dispersed; so, a major effort has been made to develop a knowledge base that can be interrogated and used to answer practical questions about potential exploitation of plant and nutritional characteristics. Future research will build on the success with Bambara groundnut and include topics such as urban agriculture, rural development and diversification, and the development of novel foods.
  5. Kadukkattil Ramanunny A, Singh SK, Wadhwa S, Gulati M, Kapoor B, Khursheed R, et al.
    Expert Opin Drug Deliv, 2022 Jan;19(1):23-45.
    PMID: 34913772 DOI: 10.1080/17425247.2022.2019218
    INTRODUCTION: Non-aqueous nano-emulsions (NANEs) are colloidal lipid-based dispersions with nano-sized droplets formed by mixing two immiscible phases, none of which happens to be an aqueous phase. Their ability to incorporate water and oxygen sensitive drugs without any susceptibility to degradation makes them the optimum dosage form for such candidates. In NANEs, polar liquids or polyols replace the aqueous phase while surfactants remain same as used in conventional emulsions. They are a part of the nano-emulsion family albeit with substantial difference in composition and application.

    AREAS COVERED: The present review provides a brief insight into the strategies of loading water-sensitive drugs into NANEs. Further advancement in these anhydrous systems with the use of solid particulate surfactants in the form of Pickering emulsions is also discussed.

    EXPERT OPINION: NANEs offer a unique platform for delivering water-sensitive drugs by loading them in anhydrous formulation. The biggest advantage of NANEs vis-à-vis the other nano-cargos is that they can also be prepared without using equipment-intensive techniques. However, the use of NANEs in drug delivery is quite limited. Looking at the small number of studies available in this direction, a need for further research in this field is required to explore this delivery system further.

  6. Chan Y, Singh SK, Gulati M, Wadhwa S, Prasher P, Kumar D, et al.
    J Drug Deliv Sci Technol, 2022 Aug;74:103541.
    PMID: 35774068 DOI: 10.1016/j.jddst.2022.103541
    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease, lung cancer, and the recently emerged COVID-19, are a huge threat to human health, and among the leading causes of global morbidity and mortality every year. Despite availability of various conventional therapeutics, many patients remain poorly controlled and have a poor quality of life. Furthermore, the treatment and diagnosis of these diseases are becoming increasingly challenging. In the recent years, the application of nanomedicine has become increasingly popular as a novel strategy for diagnosis, treatment, prevention, as well as follow-up of chronic lung diseases. This is attributed to the ability of nanoscale drug carriers to achieve targeted delivery of therapeutic moieties with specificity to diseased site within the lung, thereby enhancing therapeutic outcomes of conventional therapies whilst minimizing the risks of adverse reactions. For this instance, monoolein is a polar lipid nanomaterial best known for its versatility, thermodynamic stability, biocompatibility, and biodegradability. As such, it is commonly employed in liquid crystalline systems for various drug delivery applications. In this review, we present the applications of monoolein as a novel nanomaterial-based strategy for targeted drug delivery with the potential to revolutionize therapeutic approaches in chronic lung diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links