Displaying all 7 publications

Abstract:
Sort:
  1. Kwan BH, Ong KM, Paramesran R
    Conf Proc IEEE Eng Med Biol Soc, 2007 2 7;2005:5627-30.
    PMID: 17281532
    This paper proposes a method to remove the noise in the ECG (Electrocardiogram) signals using Legendre moments. Noise is removed in the reconstructed ECG signals when lower order Legendre moments are used. RMSE (Root Mean Square Error) is used as the distortion measure for the reconstructed ECG signals. With sampling rate of 256 Hz and number of moments used is 13% of the data in each interval, experimental results show that reconstruction of ECG signal using Legendre moments can produce a smoother signal without noise while maintaining signal quality that is acceptable to cardiologist.
  2. Yu YP, Raveendran P, Lim CL, Kwan BH
    Biomed Opt Express, 2015 Nov 1;6(11):4610-8.
    PMID: 26601022 DOI: 10.1364/BOE.6.004610
    In this paper, facial images from various video sequences are used to obtain a heart rate reading. In this study, a video camera is used to capture the facial images of eight subjects whose heart rates vary dynamically, between 81 and 153 BPM. Principal component analysis (PCA) is used to recover the blood volume pulses (BVP) which can be used for the heart rate estimation. An important consideration for accuracy of the dynamic heart rate estimation is to determine the shortest video duration that realizes it. This video duration is chosen when the six principal components (PC) are least correlated amongst them. When this is achieved, the first PC is used to obtain the heart rate. The results obtained from the proposed method are compared to the readings obtained from the Polar heart rate monitor. Experimental results show the proposed method is able to estimate the dynamic heart rate readings using less computational requirements when compared to the existing method. The mean absolute error and the standard deviation of the absolute errors between experimental readings and actual readings are 2.18 BPM and 1.71 BPM respectively.
  3. Wong YJ, Tham ML, Kwan BH, Owada Y
    Sensors (Basel), 2023 Feb 23;23(5).
    PMID: 36904696 DOI: 10.3390/s23052494
    Federated learning (FL) is a technique that allows multiple clients to collaboratively train a global model without sharing their sensitive and bandwidth-hungry data. This paper presents a joint early client termination and local epoch adjustment for FL. We consider the challenges of heterogeneous Internet of Things (IoT) environments including non-independent and identically distributed (non-IID) data as well as diverse computing and communication capabilities. The goal is to strike the best tradeoff among three conflicting objectives, namely global model accuracy, training latency and communication cost. We first leverage the balanced-MixUp technique to mitigate the influence of non-IID data on the FL convergence rate. A weighted sum optimization problem is then formulated and solved via our proposed FL double deep reinforcement learning (FedDdrl) framework, which outputs a dual action. The former indicates whether a participating FL client is dropped, whereas the latter specifies how long each remaining client needs to complete its local training task. Simulation results show that FedDdrl outperforms the existing FL scheme in terms of overall tradeoff. Specifically, FedDdrl achieves higher model accuracy by about 4% while incurring 30% less latency and communication costs.
  4. Goh CH, Wong KK, Tan MP, Ng SC, Chuah YD, Kwan BH
    PLoS One, 2022;17(11):e0277966.
    PMID: 36441703 DOI: 10.1371/journal.pone.0277966
    Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability. The purpose of this study was, therefore, to develop a clustering-based algorithm to determine falls risk. Data from the Malaysian Elders Longitudinal Research (MELoR), comprising 1411 subjects aged ≥55 years, were utilized. The proposed algorithm was developed through the stages of: data pre-processing, feature identification and extraction with either t-Distributed Stochastic Neighbour Embedding (t-SNE) or principal component analysis (PCA)), clustering (K-means clustering, Hierarchical clustering, and Fuzzy C-means clustering) and characteristics interpretation with statistical analysis. A total of 1279 subjects and 9 variables were selected for clustering after the data pre-possessing stage. Using feature extraction with the t-SNE and the K-means clustering algorithm, subjects were clustered into low, intermediate A, intermediate B and high fall risk groups which corresponded with fall occurrence of 13%, 19%, 21% and 31% respectively. Slower gait, poorer balance, weaker muscle strength, presence of cardiovascular disorder, poorer cognitive performance, and advancing age were the key variables identified. The proposed fall risk clustering algorithm grouped the subjects according to features. Such a tool could serve as a case identification or clinical decision support tool for clinical practice to enhance access to falls prevention efforts.
  5. Yong HY, Zou Z, Kok EP, Kwan BH, Chow K, Nasu S, et al.
    Biomed Res Int, 2014;2014:467395.
    PMID: 25177691 DOI: 10.1155/2014/467395
    Amphidiploid species in the Brassicaceae family, such as Brassica napus, are more tolerant to environmental stress than their diploid ancestors.A relatively salt tolerant B. napus line, N119, identified in our previous study, was used. N119 maintained lower Na(+) content, and Na(+)/K(+) and Na(+)/Ca(2+) ratios in the leaves than a susceptible line. The transcriptome profiles of both the leaves and the roots 1 h and 12 h after stress were investigated. De novo assembly of individual transcriptome followed by sequence clustering yielded 161,537 nonredundant sequences. A total of 14,719 transcripts were differentially expressed in either organs at either time points. GO and KO enrichment analyses indicated that the same 49 GO terms and seven KO terms were, respectively, overrepresented in upregulated transcripts in both organs at 1 h after stress. Certain overrepresented GO term of genes upregulated at 1 h after stress in the leaves became overrepresented in genes downregulated at 12 h. A total of 582 transcription factors and 438 transporter genes were differentially regulated in both organs in response to salt shock. The transcriptome depicting gene network in the leaves and the roots regulated by salt shock provides valuable information on salt resistance genes for future application to crop improvement.
  6. Goh CH, Ferdowsi M, Gan MH, Kwan BH, Lim WY, Tee YK, et al.
    MethodsX, 2024 Jun;12:102508.
    PMID: 38162148 DOI: 10.1016/j.mex.2023.102508
    Syncope is a transient loss of consciousness with rapid onset. The aims of the study were to systematically evaluate available machine learning (ML) algorithm for supporting syncope diagnosis to determine their performance compared to existing point scoring protocols. We systematically searched IEEE Xplore, Web of Science, and Elsevier for English articles (Jan 2011 - Sep 2021) on individuals aged five and above, employing ML algorithms in syncope detection with Head-up titl table test (HUTT)-monitored hemodynamic parameters and reported metrics. Extracted data encompassed subject count, age range, syncope protocols, ML type, hemodynamic parameters, and performance metrics. Of the 6301 studies initially identified, 10 studies, involving 1205 participants aged 5 to 82 years, met the inclusion criteria, and formed the basis for it. Selected studies must use ML algorithms in syncope detection with hemodynamic parameters recorded throughout HUTT. The overall ML algorithm performance achieved a sensitivity of 88.8% (95% CI: 79.4-96.1%), specificity of 81.5% (95% CI: 69.8-92.8%) and accuracy of 85.8% (95% CI: 78.6-92.8%). Machine learning improves syncope diagnosis compared to traditional scoring, requiring fewer parameters. Future enhancements with larger databases are anticipated. Integrating ML can curb needless admissions, refine diagnostics, and enhance the quality of life for syncope patients.
  7. Ferdowsi M, Kwan BH, Tan MP, Saedon NI, Subramaniam S, Abu Hashim NFI, et al.
    Biomed Eng Online, 2024 Mar 30;23(1):37.
    PMID: 38555421 DOI: 10.1186/s12938-024-01229-9
    BACKGROUND: The diagnostic test for vasovagal syncope (VVS), the most common cause of syncope is head-up tilt test (HUTT) assessment. During the test, subjects experienced clinical symptoms such as nausea, sweating, pallor, the feeling of palpitations, being on the verge of passing out, and fainting. The study's goal is to develop an algorithm to classify VVS patients based on physiological signals blood pressure (BP) and electrocardiography (ECG) obtained from the HUTT.

    METHODS: After 10 min of supine rest, the subject was tilted at a 70-degree angle on a tilt table for approximately a total of 35 min. 400 µg of glyceryl trinitrate (GTN) was administered sublingually after the first 20 min and monitoring continued for another 15 min. Mean imputation and K-nearest neighbors (KNN) imputation approaches to handle missing values. Next, feature selection techniques were implemented, including genetic algorithm, recursive feature elimination, and feature importance, to determine the crucial features. The Mann-Whitney U test was then performed to determine the statistical difference between two groups. Patients with VVS are categorized via machine learning models including Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Multinomial Naïve Bayes (MNB), KNN, Logistic Regression (LR), and Random Forest (RF). The developed model is interpreted using an explainable artificial intelligence (XAI) model known as partial dependence plot.

    RESULTS: A total of 137 subjects aged between 9 and 93 years were recruited for this study, 54 experienced clinical symptoms were considered positive tests, while the remaining 83 tested negative. Optimal results were obtained by combining the KNN imputation technique and three tilting features with SVM with 90.5% accuracy, 87.0% sensitivity, 92.7% specificity, 88.6% precision, 87.8% F1 score, and 95.4% ROC (receiver operating characteristics) AUC (area under curve).

    CONCLUSIONS: The proposed algorithm effectively classifies VVS patients with over 90% accuracy. However, the study was confined to a small sample size. More clinical datasets are required to ensure that our approach is generalizable.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links