Displaying all 3 publications

Abstract:
Sort:
  1. Shanmuga Sundara Raj S, Fun HK, Wu J, Tian YP, Xie FX, Shao ZH, et al.
    Acta Crystallogr C, 2000 Nov;56 Pt 11:1321-2.
    PMID: 11077284
    The title compound, [Ni(C(21)H(15)N(2)S(2))(2)], has a novel cis configuration with two fluorene moieties on the same side. The Ni atom is in a square-planar configuration. The molecular packing is stabilized by intramolecular stacking between the fluorene moieties and extensive C-H.pi interactions.
  2. Fadhullah W, Yaccob NS, Syakir MI, Muhammad SA, Yue FJ, Li SL
    Sci Total Environ, 2020 Jan 15;700:134517.
    PMID: 31629263 DOI: 10.1016/j.scitotenv.2019.134517
    Nitrate is one of the primary nutrients associated with sedimentation and fuels eutrophication in reservoir systems. In this study, water samples from Bukit Merah Reservoir (BMR) were analysed using a combination of water chemistry, water stable isotopes (δ2H-H2O and δ18O-H2O) and nitrate stable isotopes (δ15N-NO3- and δ18O-NO3-). The objective was to evaluate nitrate sources and processes in BMR, the oldest man-made reservoir in Malaysia. The δ15N-NO3- values in the river and reservoir water samples were in the range +0.4 to +14.9‰ while the values of δ18O-NO3- were between -0.01 and +39.4‰, respectively. The dual plots of δ15N-NO3- and δ18O-NO3- reflected mixing sources from atmospheric deposition (AD) input, ammonium in fertilizer/rain, soil nitrogen, and manure and sewage (MS) as the sources of nitrate in the surface water of BMR. Nitrate stable isotopes suggested that BMR undergoes processes such as nitrification and mixing. Denitrification and assimilation were not prevalent in the system. The Bayesian mixing model highlighted the dominance of MS sources in the system while AD contributed more proportion in the reservoir during both seasons than in the river. The use of δ13C, δ15N, and C:N ratios enabled the identification of terrestrial sources of the organic matter in the sediment, enhancing the understanding of sedimentation associated with nutrients previously reported in BMR. Overall, the nitrate sources and processes should be considered in decision-making in the management of the reservoir for irrigation, Arowana fish culture and domestic water supply.
  3. Luo W, Liu Z, Ran Y, Li M, Zhou Y, Hou W, et al.
    medRxiv, 2024 Mar 26.
    PMID: 38585938 DOI: 10.1101/2024.03.25.24304825
    The enforcement of COVID-19 interventions by diverse governmental bodies, coupled with the indirect impact of COVID-19 on short-term environmental changes (e.g. plant shutdowns lead to lower greenhouse gas emissions), influences the dengue vector. This provides a unique opportunity to investigate the impact of COVID-19 on dengue transmission and generate insights to guide more targeted prevention measures. We aim to compare dengue transmission patterns and the exposure-response relationship of environmental variables and dengue incidence in the pre- and during-COVID-19 to identify variations and assess the impact of COVID-19 on dengue transmission. We initially visualized the overall trend of dengue transmission from 2012-2022, then conducted two quantitative analyses to compare dengue transmission pre-COVID-19 (2017-2019) and during-COVID-19 (2020-2022). These analyses included time series analysis to assess dengue seasonality, and a Distributed Lag Non-linear Model (DLNM) to quantify the exposure-response relationship between environmental variables and dengue incidence. We observed that all subregions in Thailand exhibited remarkable synchrony with a similar annual trend except 2021. Cyclic and seasonal patterns of dengue remained consistent pre- and during-COVID-19. Monthly dengue incidence in three countries varied significantly. Singapore witnessed a notable surge during-COVID-19, particularly from May to August, with cases multiplying several times compared to pre-COVID-19, while seasonality of Malaysia weakened. Exposure-response relationships of dengue and environmental variables show varying degrees of change, notably in Northern Thailand, where the peak relative risk for the maximum temperature-dengue relationship rose from about 3 to 17, and the max RR of overall cumulative association 0-3 months of relative humidity increased from around 5 to 55. Our study is the first to compare dengue transmission patterns and their relationship with environmental variables before and during COVID-19, showing that COVID-19 has affected dengue transmission at both the national and regional level, and has altered the exposure-response relationship between dengue and the environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links