CASE REPORT: An 87-year-old male had a tumour nodule over the left parotid tail for about 20 years. Physical examinations revealed a 4.5 cm soft, non-tender and fixed mass. After the left parotidectomy, pathology confirmed the diagnosis of IDC arising within an intraparotid lymph node. The cystic component of the tumour was lined by single to multilayered ductal cells with micropapillary growth pattern. The solid part showed intraductal proliferation of neoplastic cells in solid, cribriform, micropapillary and Roman bridge-like structure. By immunohistochemistry (IHC), the tumour cells were positive for S-100, CK (AE1/AE3), mammaglobin, SOX10, and estrogen receptor (ER), with myoepithelial cell rimming highlighted by positive p63 and calponin IHC stains. The prognosis of this patient is excellent after complete excision.
DISCUSSION: The mechanism of salivary gland tumour arising in the intra-parotid gland LN was assumed to be related to salivary duct inclusion within the intraparotid gland LN which is a normal occurrence during embryology development. Although the terminology may raise some confusion about the relationship between IDC and conventional salivary duct carcinoma (SDA), they are different in immunophenotype and clinicopathologic features. IDC is characterised by S100 (+) ER (+) with predominant intraductal growth and excellent prognosis; while SDC features S100 (-) androgen receptor (+) with predominant invasive growth and aggressive behavior. Recent discovery of recurrent RET gene rearrangement in IDC but not SDC also supports that IDC is not precursor lesion of the SDC.
METHODS: ASCs were cultured on chitosan nano-deposited surfaces to form 3D spheres. Mitochondrial activity and ATP production were assessed using MitoTracker staining, Seahorse XF analysis, and ATP luminescence assays. Single-cell RNA sequencing, followed by Ingenuity Pathway Analysis (IPA), was conducted to uncover key regulatory pathways, which were validated through molecular techniques. Pathway involvement was confirmed using epigenetic inhibitors or PPARγ-modulating drugs. Mitochondrial structural integrity and delivery efficiency were evaluated after isolation.
RESULTS: Chitosan-induced ASC spheres exhibited unique compact mitochondrial morphology, characterized by condensed cristae, enhanced mitochondrial activity, and increased ATP production through oxidative phosphorylation. High expressions of mitochondrial complex I genes and elevated levels of mitochondrial complex proteins were observed without an increase in reactive oxygen species (ROS). Epigenetic modification of H3K27me3 and PPARγ involvement were discovered and confirmed by inhibiting H3K27me3 with the specific EZH2 inhibitor GSK126 and by adding the PPARγ agonist Rosiglitazone (RSG). Isolated mitochondria from ASC spheres showed improved structural stability and delivery efficiency, suppressed the of inflammatory cytokines in LPS- and TNFα-induced inflamed cells, and rescued cells from damage, thereby enhancing function and promoting recovery.
CONCLUSION: Enhancing mitochondrial ATP production via the EZH2-H3K27me3-PPARγ pathway offers an alternative strategy to conventional cell-based therapies. High-functional mitochondria and delivery efficiency show significant potential for regenerative medicine applications.